A Fully Compositional Theory of Digital Circuits

George Kaye

University of Birmingham

05 April 2024

5th Meeting of the Southern and Midlands Logic Seminar

What are we going to be talking about?

Digital circuits!

Digital circuits!

What are we going to be talking about?

We want a compositional theory of digital circuits.

Using string diagrams removes much of the bureacracy

(also they look pretty)

The story so far

How did we get here?

Yves Lafont

'Towards an algebraic theory of Boolean circuits'

The story so far

Dan Ghica, Achim Jung, Aliaume Lopez

'Diagrammatic semantics for digital circuits'

'Do you know category theory' 'Do you want to do circuits stuff'

'No' 'Okay' **David Sprunger**

'I will help too'

Combinational circuit components

Sequential circuit components

Dark circuits - f - may contain delay or feedback.

Circuits are morphisms in a freely generated symmetric traced monoidal category (STMC).

What is the meaning?

Denotational semantics

Values are interpreted in a lattice:

Let's make everything a function

Feedback is interpreted as the least fixed point.

How do we model delay? Streams!

A stream \mathbf{V}^{ω} is an infinite sequence of values.

 $V_0 :: V_1 :: V_2 :: V_3 :: V_4 :: V_5 :: V_6 :: V_7 :: \cdots$

A stream function $\mathbf{V}^\omega
ightarrow \mathbf{V}^\omega$ consumes and produces streams.

$$f(\mathsf{v}_{\mathsf{O}}::\mathsf{v}_{\mathsf{1}}::\mathsf{v}_{\mathsf{2}}::\mathsf{v}_{\mathsf{3}}::\mathsf{v}_{\mathsf{4}}::\cdots) = \mathsf{w}_{\mathsf{O}}::\mathsf{w}_{\mathsf{1}}::\mathsf{w}_{\mathsf{2}}::\mathsf{w}_{\mathsf{3}}::\mathsf{w}_{\mathsf{4}}::\cdots$$

Interpreting the sequential components

$\boxed{\mathbf{V}}_{-}() \coloneqq \mathbf{V} :: \bot :: \bot :: \bot :: \cdots$

$- \square - (V_0 :: V_1 :: V_2 :: \cdots) := \bot :: V_0 :: V_1 :: V_2 :: \cdots$

Does every stream function $(\mathbf{V}^m)^\omega \to (\mathbf{V}^n)^\omega$ correspond to a circuit?

No.

(but this is to be expected!)

Circuits are causal.

They can only depend what they've seen so far.

Circuits are monotone.

They are constructed from monotone functions.

Circuits are finitely specified.

Their streams have finitely many stream derivatives.

Theorem

A stream function is the interpretation of a sequential circuit if and only if it is **causal, monotone** and has **finitely many stream derivatives**.

Sound and complete denotational semantics!

Suppose we have two circuits with the same denotation

$$\llbracket -f - \rrbracket = \llbracket -g - \rrbracket$$

What does this tell us about the structure of these circuits?

Operational semantics

We want to find a set of reductions for digital circuits We want to reduce circuits to their outputs syntactically in a step-by-step manner

by moving boxes and wires around

Going global

What are we going to do about the non-delay-guarded trace? In industry, feedback is usually delay-guarded. But this rules out some clever circuits!

(And also it would be cheating)

V is a finite lattice... The functions are monotone... We can compute the least fixed point in finite iterations!

Getting rid of non-delay-guarded feedback

Getting rid of non-delay-guarded feedback

For any circuit

We want to compute the outputs of circuits given some inputs

$$-\overline{v} - f - \tilde{w} - g - \overline{w} - g$$

How does a circuit process a value?

What about delays?

Catching the jet stream

When are two circuits observationally equivalent? Circuits have finitely many states...

Definition

Two circuits with at most *c* delay components are observationally equivalent if the reduction procedure creates the same outputs for all inputs of length $|\mathbf{V}|^c + 1$.

Theorem

Two circuits are observationally equivalent if and only if they are denotationally equivalent.

Sound and complete operational semantics!

This is a superexponential upper bound for testing circuit equivalence

Can we do better?

Algebraic semantics

Mealy is so back

First things first...

Say we have a procedure |-| for establishing a canonical circuit for a function $f: \mathbf{V}^m \to \mathbf{V}^n$

A circuit is normalised if it is in the image of |-|

What equations are needed to normalise any circuit?

It's completely normal

It's completely normal

How to translate between

First encode one set of states into the other

$$\overline{s}$$
 $|enc_m| = \overline{t} - \overline{t} - |dec_m| = \overline{s} - \overline{s}$

(and for any future states)

With these equations we can derive

Is this enough?

The cores may not have the same semantics!

where f and g 'agree on the states that matter'

By the completeness of the denotational semantics, each stream function has a corresponding encoded circuit...

Theorem Two circuits are equal by the equations if and only if they are denotationally equal.

Sound and complete algebraic semantics!

Three different semantics for sequential digital circuits

