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What are we going to be talking about?

Digital circuits!
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What are we going to be talking about?
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What are we going to be talking about?

We want a compositional theory of digital circuits.
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Using string diagrams removes
much of the bureacracy

(also they look pretty) 3



The story so far

How did we get here?
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The story so far

2003
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The story so far

Yves Lafont
‘Towards an algebraic theory of Boolean circuits’
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The story so far

2016
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The story so far

Dan Ghica, Achim Jung, Aliaume Lopez
‘Diagrammatic semantics for digital circuits’
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The story so far

2019
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The story so far

‘Do you know category theory’
‘Do you want to do circuits stuff’

‘No’
‘Okay’

David Sprunger

‘I will help too’
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Put the pieces together

Syntax
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Combinational circuit components

gates

AND gate

OR gate

NOT gate

(co)monoid structure

introduce

fork

join

eliminate

categorical structure

identity

symmetry

Light circuits f only contain gates and structure.

(actually, we do it more generally than this, but let’s keep it simple) 12



Sequential circuit components

Values

f false

t true

⊤ short circuit

Delay Feedback

f ⇒ f

Dark circuits f may contain delay or feedback.
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Building circuits

Circuits are morphisms in a freely generated
symmetric traced monoidal category (STMC).
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f
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Need an example?
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We need some meaning

What is the meaning?
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We need some meaning

Denotational
semantics
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Interpreting the values

Values are interpreted in a lattice:

⊤

f

⊥

t

7→ ⊥

f 7→ f

t 7→ t

⊤ 7→ ⊤
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Let’s make everything a function

g monotone functions g : Vm → V

initialise () 7→ (⊥)

copy x 7→ (x, x)

join in the lattice (x, y) 7→ x ⊔ y

discard x 7→ ()

Feedback is interpreted as the least fixed point.
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Functions are not enough

How do we model delay?

Streams!
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Streams

A stream Vω is an infinite sequence of values.

v0 :: v1 :: v2 :: v3 :: v4 :: v5 :: v6 :: v7 :: · · ·

A stream function Vω → Vω consumes and produces streams.

f (v0 :: v1 :: v2 :: v3 :: v4 :: · · · ) = w0 :: w1 :: w2 :: w3 :: w4 :: · · ·
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Interpreting the sequential components

v () := v ::⊥ ::⊥ ::⊥ :: · · ·

(v0 :: v1 :: v2 :: · · · ) := ⊥ :: v0 :: v1 :: v2 :: · · ·
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Maybe there are too many streams

Does every stream function (Vm)ω → (Vn)ω

correspond to a circuit?

No.
(but this is to be expected!)
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Restricting the stream functions

Circuits are causal.
They can only depend what they’ve seen so far.

Circuits are monotone.
They are constructed from monotone functions.

Circuits are finitely specified.
Their streams have finitely many stream derivatives.
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These are the streams we’re looking for

Theorem

A stream function is the interpretation of a sequential circuit
if and only if it is causal, monotone and has finitely many
stream derivatives.

Sound and complete denotational semantics!
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Doing something useful

Suppose we have two circuits
with the same denotation

J f K = J g K

What does this tell us about the
structure of these circuits?
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Reducing it down

Operational
semantics

27



Reducing it down

We want to find a set of
reductions for digital circuits

We want to reduce circuits to their outputs
syntactically in a step-by-step manner
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Going global

f = v f̂

by moving boxes and wires around
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Going global

v
:= v ‘Register’

v f ⇝
f̂

⊥v

f ∗
⇝

f̂
s
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The sticking point

What are we going to do about the non-delay-guarded trace?

In industry, feedback is usually delay-guarded.

But this rules out some clever circuits!

f
G

F ⇒ F G

(And also it would be cheating)
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Getting rid of non-delay-guarded feedback

V is a finite lattice...

The functions are monotone...

We can compute the least fixed point
in finite iterations!
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Getting rid of non-delay-guarded feedback

f0 := f f k+1 :=
f

f k

f
x

⇝ F2x+1
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Getting rid of non-delay-guarded feedback

t ⇝ t
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Here’s Mealy

For any circuit

f ∗
⇝

f̃s
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What is the goal

We want to compute the outputs of circuits given some inputs

fv ∗
⇝ g w

How does a circuit process a value?
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Reducing values

v g ⇝ JgK (v) v ⇝
v
v

v
w

⇝ v ⊔ w v ⇝

Lemma

For every f there exists w s.t. fv
∗
⇝ w .
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Catching the jet stream

What about delays?

fv := f
v

⇝
fv
f

’Streaming’
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Catching the jet stream

fv ⇝
f̂s

v
⇝

f̂

f̂s
v

⇝

f̂

t
w ⇝

f̂ t
w

⇝
f̂t

w
:= g w
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Observe this

When are two circuits observationally equivalent?

Circuits have finitely many states...

Definition

Two circuits with at most c delay components are
observationally equivalent if the reduction procedure
creates the same outputs for all inputs of length |V|c + 1.
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Observe this

Theorem

Two circuits are observationally equivalent if and only if
they are denotationally equivalent.

Sound and complete operational semantics!
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Still takes a while

This is a superexponential upper bound for
testing circuit equivalence

Can we do better?
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Efficiency is everything

Algebraic
semantics
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Mealy is so back

First things first...

= =

= F = F2x+1

By these equations, F =
F̂s
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It’s completely normal

Say we have a procedure |−| for establishing a
canonical circuit for a function f : Vm → Vn

A circuit is normalised if it is in the image of |−|

What equations are needed to
normalise any circuit?
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It’s completely normal

=

= =

= =

= = = =

= = =

= = = =
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It’s completely normal

= = =

= = =

= = =

= = =

= = =
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Changing the states

How to translate between |f |s and |g|t ?

First encode one set of states into the other

|encm|s = t |decm|t = s

(and for any future states)
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Changing the states

|f |s
x

= |f |s
x

|encm| |decm|

v g = JgK (v) v =
v
v

v
w

= v ⊔ w

v = = = pv =
pv
p

= = = =
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Changing the states

With these equations we can derive

|f |s = |f |encm(s) |encm||decm|
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Think about what matters

Is this enough?

f
t

f
t

The cores may not have the same semantics!
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Think about what matters

|f |s = |g|s

where f and g ‘agree on the states that matter’
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It is complete

By the completeness of the denotational semantics, each
stream function has a corresponding encoded circuit...

Theorem

Two circuits are equal by the equations if and only if they are
denotationally equal.

Sound and complete algebraic semantics!
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To the end

Three different semantics for sequential digital circuits

Denotational

Operational Algebraic

∼=

∼=

∼=
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