
A Fully Compositional Theory of Digital Circuits

George Kaye
University of Birmingham

15 February 2024 – PPLV Research Seminar

What are we going to be talking about?

Digital circuits!

1

What are we going to be talking about?

Digital circuits!

R

S

Q

Q
2

What are we going to be talking about?

We want a compositional theory of digital circuits.

F G H

GF
F

G H

Using string diagrams removes
much of the bureacracy

(also they look pretty) 3

The story so far

How did we get here?

4

The story so far

2003
5

The story so far

Yves Lafont
‘Towards an algebraic theory of Boolean circuits’

6

The story so far

2016
7

The story so far

Dan Ghica, Achim Jung, Aliaume Lopez
‘Diagrammatic semantics for digital circuits’

8

The story so far

‘Wow, this guy seems pretty groovy’ *OCaml noises*

9

The story so far

2019
10

The story so far

‘No’
‘Okay’

‘Do you know category theory’
‘Do you want to do circuits stuff’

11

The story so far

2021
12

The story so far

+ =

+ =

13

The story so far

David Sprunger
(now at Indiana State University)

14

Let’s get dangerous

15

Combinational circuit components

gates

AND gate

OR gate

NOT gate

(co)monoid structure

disconnected

fork

join

stub

categorical structure

identity

symmetry

Light circuits F only contain gates and structure.

(actually, we do it more generally than this, but let’s keep it simple)
16

Sequential circuit components

Values

f false

t true

⊤ short circuit

Delay Feedback

F ⇒ F

Dark circuits F may contain delay or feedback.

17

Building circuits

Circuits are morphisms in a freely generated
symmetric traced monoidal category (STMC).

GF
F

G F

18

Need an example?

R

S

Q

Q

19

We need some meaning

What is the meaning?

20

We need some meaning

Denotational
semantics

21

Interpreting the values

Values are interpreted in a lattice:

⊤

f

⊥

t

7→ ⊥

f 7→ f

t 7→ t

⊤ 7→ ⊤

22

Let’s make everything a function

g monotone functions g : Vm → V

initialise () 7→ (⊥)

copy x 7→ (x, x)

join in the lattice (x, y) 7→ x ⊔ y

discard x 7→ ()

Feedback is interpreted as the least fixed point.

23

Functions are not enough

How do we model delay?

Streams!

24

Streams

A stream Vω is an infinite sequence of values.

v0 :: v1 :: v2 :: v3 :: v4 :: v5 :: v6 :: v7 :: · · ·

A stream function Vω → Vω consumes and produces streams.

f (v0 :: v1 :: v2 :: v3 :: v4 :: · · ·) = w0 :: w1 :: w2 :: w3 :: w4 :: · · ·

25

Interpreting the sequential components

v () := v ::⊥ ::⊥ ::⊥ :: · · ·

(v0 :: v1 :: v2 :: · · ·) := ⊥ :: v0 :: v1 :: v2 :: · · ·

26

Maybe there are too many streams

Does every stream function (Vm)ω → (Vn)ω

correspond to a circuit?

No.
(but this is to be expected!)

27

Restricting the stream functions

Circuits are causal.
They can only depend what they’ve seen so far.

Circuits are monotone.
They are constructed from monotone functions.

Is that all? Not quite... (but we’ll get there)

28

Some operations on stream functions

Given a causal stream function f : (Vm)ω → (Vn)ω and an element a ∈ Vm...

initial output f [a] ∈ Vn

‘the first thing f produces given a’

stream derivative fa ∈ (Vm)ω → (Vn)ω

‘how f behaves after seeing a first’

Hold on, these look familiar...

29

An old friend

Mealy machines!
Stream functions are the states in a Mealy machine.

30

Circuits have finitely many behaviours

Circuits have a finite number of components.

So there are finite number of states in the Mealy machine.

So the outputs of streams given some input must be periodic.

(There are finitely many stream derivatives).

31

These are the streams we’re looking for

Theorem
A stream function is the interpretation of a sequential circuit if and only if it is
causal, monotone and has finitely many stream derivatives.

Sound and complete denotational semantics

32

Doing something useful

Suppose we have two circuits
with the same denotation

J F K = J G K

What does this tell us about the
structure of these circuits?

33

Reducing it down

Operational
semantics

34

Reducing it down

We want to find a set of
reductions for digital circuits

We want to reduce circuits to their outputs
syntactically in a step-by-step manner

35

Going global

F = v F̂

by moving boxes and wires around

36

Going global

v
:= v ‘Register’

v F ⇝
F̂

⊥v

F
∗
⇝

F̂
s

37

The sticking point

What are we going to do about the non-delay-guarded trace?

In industry, feedback is usually delay-guarded.

But this rules out some clever circuits!

G

F
⇒ G F

(And also it would be cheating)

38

Getting rid of non-delay-guarded feedback

V is a finite lattice...

The functions are monotone...

We can compute the least fixed point
in finite iterations!

39

Getting rid of non-delay-guarded feedback

F0 := F Fk+1 :=
F

Fk

F
x

⇝ F2x+1

40

Getting rid of non-delay-guarded feedback

t ⇝ t

41

Here’s Mealy

For any circuit

F ∗
⇝

F̃s

42

What is the goal

We want to compute the outputs of circuits given some inputs

Fv ∗
⇝ G w

How does a circuit process a value?

43

Reducing values

v g ⇝ JgK (v) v ⇝
v
v

v
w

⇝ v ⊔ w v ⇝

‘’

Lemma

For every F there exists w s.t. Fv ⇝ w .

44

Catching the jet stream

What about delays?

Fv := F
v

⇝
Fv
F

’Streaming’

45

Catching the jet stream

Fv ⇝
F̂s

v
⇝

F̂

F̂s
v

⇝

F̂

t
w ⇝

F̂ t
w

⇝
F̂t

w
:= G w

46

Observe this

When are two circuits observationally equivalent?

Circuits have finitely many states...

Definition

Two circuits with at most c delay components are
observationally equivalent if the reduction procedure
creates the same outputs for all inputs of length |V|c + 1.

47

Observe this

Theorem

Two circuits are observationally equivalent if and only if
they are denotationally equivalent.

Sound and complete operational semantics

48

Still takes a while

This is a superexponential upper bound for testing
circuit equivalence

Can we do better?

49

Efficiency is everything

Algebraic
semantics

50

Mealy is so back

First things first...

= =

= F = F2x+1

By these equations, F =
F̂s

51

It’s completely normal

We want a way to use equations to translate a
circuit into another circuit with the same behaviour

52

It’s completely normal

Say we have a procedure | − | for establishing a
canonical circuit for a function f : Vm → Vn

A circuit is normalised if it is in the image of | − |

What equations are needed to
normalise any circuit?

53

It’s completely normal

= =

= =

= = =

= = =

= =

= = = 54

It’s completely normal

Is this enough?

f
t

f
t

The cores may not have the same semantics!

Idea: encode circuits so their state words have
length equal to the number of states

55

State your intention

Need to know the number of states: isolate the
state transition and output

Fs = s F0

F1

56

Cartesian doubt

Need equations to make the fork natural and unital

F =
F

F
= =

F = F =
F

F

57

Cartesian doubt

n
npm =

p

p

n

n
m v =

v
v

=

= =

58

Encoding

Now add an encoding equation

s F

G
=

γ≤(s) f≤0

g≤1

(I’m hiding some of the internal machinations here)

59

It is complete

By the completeness of the denotational semantics, each
stream function has a corresponding encoded circuit...

Theorem

Two circuits are equal by the equations if and only if they are
denotationally equal.

Sound and complete algebraic semantics

60

Making it combinatorial

Graph
rewriting

61

Making it combinatorial

F̂s ⇒

It is hard for computers to work with string diagrams...

...but computers love graphs!

62

A hyper kind of graph

ϕ ψ
0

1

2

0

1

3 3
2

There are correspondences between certain classes of
hypergraphs and circuit string diagrams.

ϕ ψ

63

Using the correspondence

Circuit string diagram Hypergraph representation

New circuit string diagram Rewritten hypergraph

Graph rewrite

64

Implementing it all

The rewriting framework has been implemented in a
hardware description language.

(the language is still in development)
(so I’ve been warned not to accidentally announce anything)

(also they changed everything so I can’t actually compile it at the moment)

65

I can still show you something

Create a circuit...

accumulator

1 Cin:1
A:4
B:4

ripple_adder
S:4

Cout:1
4

4 4 0 :: 4

S:4

1

40^ω 1

A:4

66

I can still show you something

The evaluator converts it into Mealy form...

accumulator

4 4
4

∇_4 4

4

1
1
1

∇_1 1

1

4 4
4

∇_4 4

4

1 1
1

∇_1 1

1

4

4
1
4
1
4

MealyCore(accumulator)

4
1
4
1
4

1

4

1

4

4 4 delay_4 4

1

1 delay_1 1

4

4 delay_4 4

1

1 delay_1 1

4 S:4

0 1

0 4

⊥⊥⊥⊥ 4

⊥ 1

A:4

67

I can still show you something

...and then evaluates an input.

accumulator

4

4
4

∇_4 4

4 4 delay_4 4

4

4

4
4

∇_4 4

1

1
1

∇_1 1
1

4 4
4

∇_4 4

4

1 1
1

∇_1 1

1

4

4
1
4
1
4

MealyCore(accumulator)

4
1
4
1
4

1

4

1

4

4 4 delay_4 4

1

1 delay_1 1

4

4 delay_4 4

1

1 delay_1 1

4 S:4

4

0 1

⊥⊥⊥⊥ 4

⊥ 1

1 4

1 4

A:4

68

To the end

Three different semantics for sequential digital circuits

Denotational

Operational Algebraic

∼=

∼=

∼=

Can adapt for automatic reasoning using graph rewriting

69

	Syntax
	Denotational semantics
	Operational semantics
	Algebraic semantics
	Graph rewriting

