A visualiser for linear lambda-terms as rooted 3-valent maps

George Kaye
University of Birmingham CLA'2019, July 1

Outline

- Background
- Motivation
- Demo
- Future work

The lambda calculus

A model of computation where programs are expressed using three constructs:

The lambda calculus

Variables can be bound or free

The lambda calculus

Terms that differ only by labels of variables are $\boldsymbol{\alpha}$-equivalent We can rename terms using $\boldsymbol{\alpha}$-conversion

$$
\lambda x . \lambda y . x \text { y } \rightarrow_{\alpha} \lambda a \cdot \lambda b . a b
$$

The lambda calculus

Alternatively, we can use de Bruijn indices to represent the number of lambdas between a variable and where it was initially abstracted

$$
\lambda x . \lambda y . x y \equiv \lambda \lambda 10
$$

This eliminates the need for \propto-conversion

The lambda calculus

Function application is performed by β-reduction on β-redexes:

$$
(\lambda x . x) a \rightarrow_{\beta} x[x \mapsto a] \equiv a
$$

- Repeatedly performing β-reduction is called normalisation
- A term with no β-redexes is in its normal form

The lambda calculus

- Every term has a single normal form
- But there can be many different ways of reaching it
- These represent different reduction strategies
- We can represent this with a normalisation graph

The lambda calculus

The lambda calculus

Some terms do not have a computable normal form
$(\lambda x . x x)(\lambda x . x x)$

$$
\begin{aligned}
\rightarrow_{\beta} \times x[x \mapsto & (\lambda x . x x)] \\
& \equiv(\lambda x . x x)(\lambda x \cdot x x)
\end{aligned}
$$

The lambda calculus

Some terms do not have a computable normal form But they may still have a finite normalisation graph!

$$
(\lambda x . x x)(\lambda x . x x) \swarrow
$$

Fragments of the lambda calculus

- The pure lambda calculus contains all terms
- The linear lambda calculus contains terms in which each variable is used exactly once
- The planar lambda calculus contains linear terms in which each variable is used in the order of abstraction

Fragments of the lambda calculus

$\lambda x . x$

$\lambda x .(\lambda y . y) x$
$\lambda x . \lambda y . x y$
$\lambda x . \lambda y . y x$
$\lambda x . x$ x
$\lambda x . \lambda y . x$

Fragments of the lambda calculus

$\lambda x . x$
$\lambda x .(\lambda y . y) x$
$\lambda x . \lambda y . x y$
$\lambda x . \lambda y . y x$
$\lambda \mathrm{x} . \mathrm{x} \mathrm{x}$
$\lambda x . \lambda y . x$

Fragments of the lambda calculus

$\lambda x . x$
$\lambda x .(\lambda y . y) x$
$\lambda x . \lambda y . x y$
$\lambda x . \lambda y . y x$
$\lambda \mathrm{x} . \mathrm{x} \mathrm{x}$
$\lambda x . \lambda y . x$

Fragments of the lambda calculus

- Linear (and planar) terms have special properties
- Linearity and planarity are preserved by normalisation
- All linear terms have a computable normal form
- Normalisation of linear terms is efficient
- Computing the normal form of a linear term is PTIME-complete

Linear lambda calculus and PTIME-completeness (Mairson, 2004)

- All paths to the normal form of a linear term are the same length

Lambda-terms as rooted maps

We can build up term maps by combining these nodes and a special node called the root, which represents the complete term

Lambda-terms as rooted maps

$\lambda x . \lambda y . \lambda z . x(y z)$

Lambda-terms as rooted maps

$\lambda x . \lambda y . \lambda z . x(y z)$

Removing the labels and arrows turns this into a rooted map

Lambda-terms as rooted maps

$\lambda x . \lambda y . \lambda z . x(y z)$
This term is
linear: the map is 3 -valent planar: there are no crossings

Lambda-terms as rooted maps

$\lambda x . \lambda y . \lambda z \cdot x(z y)$
This term is linear: the map is 3 -valent non-planar: there is one crossing

Beta reduction

($\lambda x . t) u$

Beta reduction

$$
t[x \mapsto u]
$$

Outline

- Background
- Motivation
- Demo
- Future work

Motivation

- It can be interesting to examine the different topological properties shared between the maps of terms
- We can perform experimental mathematics with these maps
- We want to be able to test conjectures about these maps
- But drawing them can be time-consuming...
- So why not get something to do it for us!

Outline

- Background
- Motivation
- Demo
- Future work
https://www.georgejkaye.com/pages/fyp/visualiser.html

λ-term visualiser

λ-term gallery
Graph display powerered by Cytoscape.js
Type a term t and an environment Γ below!

Demo

https：／／www．georgejkaye．com／pages／fyp／visualiser．html

$\lambda x . \lambda y . \lambda z . x(y z)$人入入2（10）

Crossings： 0
Abstractions： 3
Applications： 2
Variables： 3
Free variables： 0
Beta redexes： 0
© Show labels \bigcirc No labels

| Full screen | Reset view | Reset to original term | Export map |
| :--- | :--- | :--- | :--- | :--- |

 Back

Normalisation graph options
Draw maps（very costly for large maps） ） Draw arrows（very costly for large maps）\square Draw labels（can get cluttered for large maps）\square View normalisation graph

$\lambda x . \lambda y . \lambda z . x(z y)$
 $\boldsymbol{\lambda \lambda \lambda 2 (0 1)}$
 Crossings： 1
 Abstractions： 3
 Applications： 2
 Variables： 3
 Free variables： 0
 Beta redexes： 0
 \bigcirc Show labels \bigcirc No labels
 Normalise Watch normalisation Outermost $~$｜Stop Back
 Normalisation graph options Draw maps（very costly for large maps）\square Draw arrows（very costly for large maps）\square Draw labels（can get cluttered for large maps）\square View normalisation graph

Demo

($\lambda x .(\lambda y . y) x)(\lambda a$.
 ($\lambda \mathrm{b} . \mathrm{b}$) a)
 $(\lambda(\lambda 0) 0)(\lambda(\lambda 0) 0)$
 Crossings: 0
 Abstractions: 4
 Applications: 3
 Variables: 4
 Free variables: 0
 Beta redexes: 3
 - $(\lambda x .(\lambda y . y) x)(\lambda a .(\lambda b . b)$ a)
 - $(\lambda y . y) x$

- ($\lambda \mathrm{b} . \mathrm{b}) \mathrm{a}$

O Show labels O No labels

Full screen	Reset view	Reset to original term	Export map

Back
Normalisation graph options
Draw maps (very costly for large maps) \square
Draw arrows (very costly for large maps) \square
Draw labels (can get cluttered for large maps) \square
View normalisation graph

Demo

$(\lambda \mathbf{x} .(\lambda y . y) x)(\lambda a$.

($\lambda \mathrm{b} . \mathrm{b})$ a)
($\boldsymbol{\lambda}(\lambda 0) 0)(\boldsymbol{\lambda}(\boldsymbol{\lambda} 0) 0)$
Crossings: 0
Abstractions: 4
Applications: 3
Variables: 4
Free variables: 0
Beta redexes: 3

- $(\lambda x .(\lambda y . y) x)(\lambda a .(\lambda b . b)$ a)
- ($\lambda \mathrm{y} . \mathrm{y}) \mathrm{x}$
- ($\lambda \mathrm{b} . \mathrm{b}) \mathrm{a}$

> Hovering over a redex in the list will highlight it in the term and the map

O Show labels \bigcirc No labels

| Full screen | Reset view | Reset to original term | Export map |
| :--- | :--- | :--- | :--- | | Normalise | Watch normalisation | Outermost \checkmark Stop |
| :--- | :--- | :--- | :--- | :--- |

Back
Normalisation graph options
Draw maps (very costly for large maps) \square
Draw arrows (very costly for large maps)
Draw labels (can get cluttered for large maps) \square View normalisation graph

Demo

https://www.georgejkaye.com/pages/fyp/visualiser.html

Vertices: 6
Edges: 9
Total paths: 6
Shortest path: 3
Longest path: 3
Mean path: 3.00
Median path: 3
Mode path: 3
Full screen
Back
Export graph

Demo

We can visualise pure terms too!

Demo

And their normalisation graphs if they're finite

(infinite graphs will give up after ~ 100 reductions)

Demo

Examples using Mairson's Boolean circuit encodings

True
$\lambda \lambda(\lambda \lambda \lambda 021) 10$

False
$\lambda \lambda(\lambda \lambda \lambda 021) 01$

Demo

And True True

$(\lambda \lambda 10(\lambda \lambda(\lambda \lambda \lambda 021) 01)(\lambda \lambda(\lambda 0(\lambda 0)(\lambda 0)(\lambda 0)) 01))(\lambda \lambda(\lambda \lambda \lambda 021) 10)(\lambda \lambda(\lambda \lambda \lambda 021) 10)$

Demo

https://www.georgejkaye.com/pages/fyp/visualiser.html

And True True

True

Demo

And True False

Demo

https://www.georgejkaye.com/pages/fyp/visualiser.html

And True False

False

Demo

Normalisation graph of And True False
https://www.georgejkaye.com/pages/fyp/gallery.html

λ-term gallery

λ-term visualiser

Graph display powerered by Cytoscape.js
The underlying algorithms behind the term generators can be found here (in Haskell!).

$\boldsymbol{\lambda}$ term generators

Demo

https://www.georgejkaye.com/pages/fyp/gallery.html
$\boldsymbol{\lambda}$ term generators
n 8 k 0 Pure Linear Planar

There are 60 linear terms for $\mathrm{n}=8$ and $\mathrm{k}=0$
There are 60 linear terms for $\mathrm{n}=8$ and $\mathrm{k}=0$
$60 / 60$ terms match the filtering criteria: 100.00% Click on a term to learn more about it. Clear all

$\lambda x . \lambda y . \lambda z . x(y z)$ 0 crossings

$\lambda x . \lambda y . \lambda z . x y z$ 0 crossings

$\lambda x . \lambda y . \lambda z . x(z y)$ 1 crossings

$\lambda x . \lambda y . \lambda z . y x z$ 1 crossings

$\lambda x . \lambda y . \lambda z . y(x z)$ 1 crossings

$\lambda x . \lambda y . \lambda z . x z y$ 1 crossings

$\lambda x . \lambda y . \lambda z . y(z x)$ 2 crossings

$\lambda x . \lambda y . \lambda z . z x y$ 2 crossings

$\lambda x . \lambda y . \lambda z . z(x y)$ 2 crossings

$\lambda x . \lambda y . \lambda z . y z x$
2 crossings

$\lambda x . \lambda y . \lambda z . z(y x)$ 3 crossings

$\lambda x . \lambda y . \lambda z . z y x$ 3 crossings

Demo

https://www.georgejkaye.com/pages/fyp/gallery.html
$\boldsymbol{\lambda}$ term generators

n	8	k	Pure Linear

 $32 / 32$ terms match the filtering criteria: 100.00%

(this is only the first twelve)

Demo

https://www.georgejkaye.com/pages/fyp/gallery.html

Filtering options

Crossings 1 Abstractions \square Applications \square Variables $\square \beta$-redexes \square

$\boldsymbol{\lambda}$ term generators

n 8 k 0 Pure Linear Planar

There are 60 linear terms for $\mathrm{n}=8$ and $\mathrm{k}=\mathbf{0}$
$20 / 60$ terms match $20 / 60$ terms match the filtering criteria: 33.33% Click on a term to learn more about it. Clear all

$\begin{array}{lllllll}\lambda x . \lambda y . y(x(\lambda z . z)) & \lambda x . \lambda y . y((\lambda z . z) x) & \lambda x . \lambda y .(\lambda z . z)(y x) & \lambda x . \lambda y . y x(\lambda z . z) & \lambda x . \lambda y .(\lambda z . z x) y & \lambda x . \lambda y .(\lambda z . y z) x\end{array}$ 1 crossings 1 crossings 1 crossings 1 crossings 1 crossings 1 crossings

Demo

Filtering options

Crossings \square Abstractions \square Applications \square Variables $\square \beta$-redexes 2

These are all planar... can we make a conjecture here?

λx. x
0 crossings

$$
n=2, k=0, \beta=0
$$

$\lambda x .(\lambda y . y) x$
0 crossings
($\lambda x . x$) ($\lambda y . y$)
0 crossings

$$
n=5, k=0, \beta=1
$$

Demo

So far so good...

Conjecture:

$$
\text { All closed linear lambda terms of size } n \text { with } \frac{n-2}{3} \text { redexes are planar }
$$

Outline

- Background
- Motivation
- Demo
- Future work

Future work

- Efficient generation of subsets
- Alternative ways of visualising terms

georgejkaye.com/fyp

