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Abstract

This thesis details the culmination of a project to define a fully compositional theory
of synchronous sequential circuits built from primitive components, motivated by
applying techniques successfully used in programming languages to hardware.

The first part of the thesis defines the syntactic foundations required to create
sequential circuit morphisms, and then builds three different semantic theories on
top of this: denotational, operational and algebraic. We characterise the denotational
semantics of sequential circuits as certain causal stream functions, as well as providing
a link to existing circuit methodologies by mapping between circuit morphisms, stream
functions and Mealy machines. The operational semantics is defined as a strategy
for applying some global transformations followed by local reductions in order to
demonstrate how a circuit processes a value, leading to a notion of observational
equivalence. The algebraic semantics consists of equations for bringing circuits into a
pseudo-normal form, and then encoding between different state sets. This part of the
thesis concludes with a discussion of some novel applications, such as those for using
partial evaluation for digital circuits.

While mathematically rigorous, the categorical string diagram formalism is not
suited for reasoning computationally. The second part of this thesis details an extension
of existing work on string diagram rewriting with hypergraphs so that it is compatible
with the traced comonoid structure present in the category of digital circuits. We
identify the properties that characterise cospans of hypergraphs corresponding to
traced comonoid terms, and demonstrate how to identify rewriting contexts valid for
rewriting modulo traced comonoid structure. We apply the graph rewriting framework
to fixed point operators as well as the operational semantics from the first part, and
present a new hardware description language based on these theoretical developments.
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Chapter 1

Introduction

Today’s society has become dependent on digital circuits [KB05], which run our com-
puters, homes, vehicles and much more. These days, digital circuits are so common
that one may doubt that there are any gaps in our theoretical understanding of them.

But while the design of faster and more efficient circuits is a well-trodden area, it is
relatively self-contained. We wish to support the existing techniques and procedures
with alternatives successfully applied in other fields, such as that of programming
languages. To see where the parallels lie between digital circuits and other areas, we
need a foundational, mathematically rigorous theory. Although there has been previous
work on such a theory [Laf03; GJL17a; GL18], it is the goal of this thesis to bring this
project to its ultimate conclusion: a fully compositional theory of synchronous sequential
circuits. The first point of order is to unpack exactly what this means.

1.1 Synchronous sequential circuits

The term ‘circuit’ (or ‘network’) is often used for any system constructed by connecting
wires between primitive components. Two common constructs are the ability to fork
wires or join them together, traditionally drawn using black dots as shown in Figure 1.1.
These circuits are not particularly interesting as they are structural in nature; it is the
other components that add meaning.

When it comes to picking a set of components, there is a plethora of choices for
various applications; even when restricting to electronic circuits there are different
flavours to consider. One variety is analog circuits constructed from components such
as resistors, capacitors and inductors, such as in the left of Figure 1.2. Reasoning with
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Figure 1.1: A circuit of forks and joins with no other primitives

−+

V

Figure 1.2: An analog circuit, using a voltmeter, an inductor, a capacitor,
a resistor, and a voltage source as primitive components; and a digital
circuit, using NAND gates as primitive components

analog circuits requires manipulating equations relating quantities such as voltage,
current and resistance; in a parallel line of work to our own, analog circuits have already
been given a compositional mathematical treatment [BS22].

We are concerned with digital circuits that operate over a finite number of discrete
values. Here there is a much stricter notion of causality linking input and output;
signals provided as input to a digital circuit propagate across the components, producing
outputs and updating state. Digital circuits are constructed by connecting logic gates
together with wires, to the inputs of other logic gates as illustrated in the right of
Figure 1.2. A key point to note is that when designing a digital circuit, one may create
cycles: paths from a component to itself. At a low level the components of a digital
circuit are still constructed using analog parts, but the higher-level abstraction to digital
components and discrete signals makes it far easier to design and reuse them.

Digital circuits can further be divided into classes based on their components. A
combinational circuit is a circuit that only contains logical operations for computing
functions. Such circuits have no memory; the outputs at each tick of the clock only
depend on the inputs received at that moment. A far more useful class of circuits is
that of sequential circuits , which have delay and feedback in addition to logic gates.
Sequential circuits can be divided into two parts: the combinational logic for performing
logical functions, and the state registers for storing data.

A typical digital circuit operates by using the combinational logic to perform some
function on the inputs and the current state, and use the results of this computation
to produce output signals and update the state with new data. When circuits are used
in practice, it is usually desired for them to run as fast as possible: the time between
providing the inputs and updating the output and state should be minimised.

With this in mind, there are two different ways one can design a sequential circuit.
A synchronous circuit is one in which the state only changes in time with some global
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𝑔𝑓
𝑓

𝑔 𝑓

Figure 1.3: Three types of composition: sequential, parallel (tensor)
and using a trace operator

𝑓 =
𝑔

ℎ =
𝑔

𝑘

Figure 1.4: Decomposing a large circuit 𝑓 into smaller circuits 𝑔 and 𝑘

clock signal, whereas in asynchronous circuits the state changes as soon as the inputs
do. The latter type of circuits is useful when speed is of the essence, but are harder to
design because small differences in how quickly components process inputs can lead
to the circuit assuming an unexpected state. For this reason, most practical circuits
are restricted to the synchronous kind, and so this is where we are focusing our
mathematical theory.

1.2 Compositionality and category theory

A (synchronous sequential) circuit can be viewed as a component with some input and
output wires; these wires can be connected to other components to create bigger and
more complex circuits. This is called composing circuits, and some ways of doing this
are shown in Figure 1.3. We can compose circuits horizontally (if the outputs of the
first match with the inputs of the second), vertically, or even by connecting an output
wire to an input wire, creating a feedback loop.

Our goal is to define a fully compositional theory of synchronous sequential circuits.
Here, we take full compositionality to mean that we can compose circuits solely on the
basis of their interfaces: we should not have to perform any sort of semantic check or
‘peek inside’ a circuit to find out if composition is permitted.

Compositionality is an appealing paradigm to follow because it means we can
repeatedly split complicated circuits into simpler parts until we reach some indivisible
atomic components. If one defines the behaviour of these components and how they
interact with composition, it is possible to establish the behaviour of some larger circuit
inductively by breaking it down into its constituent parts. For example, some circuit
𝑓 might be decomposed as in Figure 1.4. To prove that 𝑓 has some property, we can
prove it holds for 𝑔 and 𝑘 and verify if composition preserves these properties.

While it is possible to work with this surface-level notion of compositionality, it
is important to establish a mathematical foundation to determine the meaning and
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𝑓

𝑔

ℎ 𝑓

𝑔

Figure 1.5: Example of a string diagram

properties of composition; for this, we turn to category theory [Mac78] . A category is
made up of objects and morphisms (‘arrows’) between them. Any two arrows 𝑓 : 𝐴→ 𝐵

and 𝑔 : 𝐵 → 𝐶 can be composed to make a new morphism 𝑔 ◦ 𝑓 : 𝐴→ 𝐶 , and every
object 𝐴 has a unique identity morphism id𝐴. Composition is associative and unital;
that is to say, the following equations hold:

(ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 ) 𝑓 ◦ id𝐴 = 𝑓 id𝐵 ◦ 𝑓 = 𝑓

It turns out that this simple concept paves the way to an array of theorems that can
generalise many areas of computer science, mathematics, and beyond.

It is straightforward to see how a compositional process with inputs of type 𝐴 and
outputs of type 𝐵 could be modelled as a morphism 𝑓 : 𝐴→ 𝐵. But to model more
complex processes one needs toworkwith a class of categories known as freely generated
symmetric monoidal categories [Mac63], categories equippedwith an additional notion of
parallel composition ⊗ along with a family of morphisms 𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴 known
as symmetries to swap over inputs. Using a set of primitive components as generators,
the two composition operators can be used in combination with the identities and
symmetries to build up more complicated terms. These terms can be written as term
strings, such as the following:

id1 ⊗ (𝑓 ⊗ 𝑔 # 𝜎1,1) # (ℎ ⊗ id1 # 𝑓 ) ⊗ id1 # 𝑔

Terms described in this way are quite unintuitive, as the two different types of
composition are compressed into a one-dimensional text string. Fortunately, symmetric
monoidal categories admit an intuitive graphical notation known as string diagrams, in
which generators are drawn as boxes connected by wires, with the identity depicted
as an empty wire and the symmetry as swapping over wires. For example, the term
described above can be depicted diagrammatically as in Figure 1.5, which is far easier
to comprehend than the original term string.

String diagrams do not add any more computational power to one-dimensional
reasoning, but they are immensely beneficial because the categorical axioms of asso-
ciativity and unitality are ‘absorbed’ by the notation: two morphisms are equal if and
only if their string diagrams share the same connectivity between boxes [KL80; Kis14;
Sel11]. This makes proofs far less bureaucratic, as one can focus on the non-trivial
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steps without having to constantly rearrange the bracketing of a term. String diagrams
also make the work more approachable and easier to explain to non-mathematicians;
using the diagrammatic approach it is possible to give talks about category theory
without mentioning categories at all. There have even been books written with this
philosophy [CK18].

1.3 Compositionality and sequential circuits

One might argue that composition is already widespread in sequential circuit design,
and indeed it is: circuits are constructed by connecting lots of very common primitive
components together to make something more complex. But this is done informally, as
the behaviour of a circuit is usually tested by simulating it and seeing what happens. We
can simulate the subcomponents, but what does this mean for their composite? Without
a guarantee of full compositionality, we have no reason to believe that connecting two
well-behaved circuits together will result in another well-behaved circuit.

Progress towards full compositionality for sequential circuits has been hampered
by the presence of the dreaded non-delay-guarded feedback loop; a cycle that does not
pass through any state registers. Non-delay-guarded feedback can lead to undefined
behaviour; for example, if we assume that the rightmost circuit 𝑓 in Figure 1.3 contains
no registers, then it is not immediately obvious how to compute the first input, as it
would depend on itself.

Some approaches try to nullify this by considering only some ‘safe’ subset of circuits
which will always be well-behaved [CSBH21], by introducing some sort of ‘type system’
on wires so that components may only be connected if they are guaranteed to have
well-defined behaviour at the same points in time [NAS23], or by only considering
certain kinds of composition [Ale14]. While these are useful perspectives, they still shy
away from true full compositionality for sequential circuits.

Even though there are indeed times when non-delay-guarded feedback can lead
to unwanted behaviour, careful use can still result in useful circuits, so it should not
be excluded from our mathematical theory of sequential circuits. Consider the circuit
below, where 𝑓 and 𝑔 are inverses, i.e. 𝑓 𝑔 = . If we were to enforce that
every loop in our circuits is somehow delay-guarded, the line of equational reasoning in
Figure 1.6 is forbidden; ‘yanking out’ the otherwise trivial loop of wires would implicitly
delete a delay and alter the outputs of the circuit over time.

Non-delay-guarded feedback can also be used in clever ways to create sequential
circuits that exhibit combinational behaviour. The circuit in Figure 1.7 is a classic
example [Mal94] in which the feedback is just used to share the two subcircuits 𝑓

and 𝑔 ; the circuit acts as 𝑔 ◦ 𝑓 or 𝑓 ◦ 𝑔 depending on the control input c. Such
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𝑓 𝑔 = 𝑓 𝑔 =

Figure 1.6: Example of diagrammatic equational reasoning by ‘yank-
ing’ a feedback loop

C

X

X

𝑓

𝑔

C

C

Figure 1.7: Example of a circuit with non-delay-guarded feedback that
can exhibit combinational behaviour [Mal94]

circuits, while not following conventional design methodology, are more efficient in
terms of circuit size and power consumption. This once more illustrates how working
in a setting where not all loops are delay-guarded may be beneficial to us.

1.4 Theories of digital circuits

While this thesis details a fully compositional categorical theory of digital circuits, this
is by no means the first time sequential circuits have been given the mathematical
treatment. Mealy machines [Mea55] are the de facto mathematical structure for spec-
ifying the behaviour of sequential circuits, and it is well known how they should be
composed [Gin14]. In more recent times Mealy machines have been given a categorical
treatment as certain kinds of coalgebra [Rut06; BRS08]. However, Mealy machines
abstract away from the components of the circuit; we are keen to preserve the link
between structure and behaviour.

While not explicitly categorical, the idea of representing circuits as mathematical
expressions built up from primitive components was studied in the 80s by Gordon, who
worked on denotational semantics for sequential machines [Gor80] and used this idea to
present a model of register transfer systems [Gor82]. Gordon subsequently noted that
higher order logic would make a good fit for a hardware description language [Gor85],
and this has become a ubiquitous concept in formal verification of hardware [Gup92].

The first steps towards a categorical theory of digital circuits took place after the turn
of the millennium, when Lafont presented an algebraic theory of Boolean circuits [Laf03].
This work already bears a great resemblance to the framework presented in this thesis;
circuits are presented as morphisms in a symmetric monoidal category freely generated
over a set of primitive logic gates. However, Lafont’s work only considered circuits for
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𝑒

Figure 1.8: Two representations of digital circuits, the first by La-
font [Laf03] and the second by Ghica, Jung, and Lopez [GJ16; GJL17a]

𝑓

Figure 1.9: The four generators of a Frobenius structure, and the
construction of a trace using them

Boolean functions; these circuits did not have any notion of delay or feedback. Lafont
also made use of a diagrammatic language (shown in Figure 1.8), but the equations of
monoidal categories still had to be applied explicitly.

It was not until 2016 that sequential circuits were given the categorical treatment
by Ghica and Jung [GJ16], who were later joined by Lopez when considering how to
use this for a graph-rewriting based operational semantics [GJL17a]. In this line of
work, sequential circuits were modelled as morphisms in a symmetric traced monoidal
category, a symmetric monoidal category extended with a trace operator. In the context
of sequential circuits, the trace operator models feedback: Tr

(
𝑓

)
=

𝑓
.

This marks a departure from many other recent works on compositional processes
such as the work on string diagrammatic signal flow theory [BSZ21] or analog cir-
cuits [BS22], which operate in a setting with a Frobenius structure. In addition to any
application-specific components, these settings also contain the four structural compo-
nents shown in Figure 1.9, forming what is known mathematically as a commutative
monoid and a cocommutative comonoid. These components are used to model the forks
and joins alluded to earlier in this chapter; as also illustrated in Figure 1.9, one can use
them to create a feedback loop.

So why not opt for such a route for sequential circuits? The issue arises in the form
of copying: we would like the leftmost equation in Figure 1.10 circuits to hold for any
circuit 𝑓 . What this means is that running 𝑓 and then copying the outputs should
be exactly the same as copying the inputs and running two copies of 𝑓 in parallel. But
this seemingly innocent equation causes the construction of the feedback loop using
smaller components to fall apart. This is because if we instantiate the circuit 𝑓

to the component, it can be propagated over the ‘end’ of the trace and break the
loop, also illustrated in Figure 1.10.

This is known as the no-cloning theorem; any setting with a Frobenius structure
cannot also admit copying. For this reason, we need to model circuits in a traced
category in which the feedback loop is built as one piece so it cannot be broken.



1.5. Contributions 8

𝑓 =
𝑓

𝑓
= 𝑓 = 𝑓

Figure 1.10: The copying equation, and its implications

1.5 Contributions

The contributions of this thesis are split into two parts, Semantics of Digital Circuits,
and Graph Rewriting for Digital Circuits. These sections respectively correspond to
two papers: A Fully Compositional Theory of Sequential Digital Circuits: Denotational,
Operational and Algebraic Semantics [GKS24], and Rewriting Modulo Traced Monoidal
Structure [GK23], which was published in Formal Structures for Computation and De-
duction (FSCD) 2023.

1.5.1 Semantics of Digital Circuits

The first part of this thesis sets about finishing the project on categorical semantics
for digital circuits [GJ16; GJL17a] in a methodical, rigorous fashion. We first define
the categorical syntax of sequential circuits and follow this up with three sound and
complete semantic frameworks: denotational, operational, and algebraic. Each of these
frameworks has their own benefits and intended uses; together they form a compre-
hensive examination of semantics of digital circuits. The framework is sufficiently
general to encompass circuits constructed from all manner of components ranging
from the level of transistors to the level of logic gates and beyond, but to provide some
intuition we include an extended case study into circuits constructed from Belnap logic
gates [Bel77], an extension of traditional Boolean logic containing the usual AND, OR
and NOT gates. An overview of the categories involved can be seen in Figure 1.11.

Chapter 3: Syntax of sequential circuits

Previously, the categories of circuits were immediately quotiented by some ‘natural
laws’; this made it difficult to define maps from circuits to other categories, as equations
on circuits also had to be considered. We take a more modular approach, in which
we first define the syntactic categories CCircΣ of combinational circuits and SCircΣ of
sequential circuits. These are categories in which we can construct circuit morphisms;
the three semantic theories that we will present next provide different ways of quo-
tienting these categories in order to identify circuits with the same behaviour under
some interpretation.
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Figure 1.11: Categories of digital circuits

Chapter 4: Denotational semantics

While the previous circuits work discussed assigning semantics to circuits in terms
of streams, this model was not constructed in great detail. It was not even deemed
important enough to appear in the conference version of the paper, only being exam-
ined in detail in the arXiv preprint [GJL17b]. Here we present a category StreamI of
stream functions with certain properties, which serve as the denotational semantics for
sequential circuits. This denotational semantics is sound and complete in that every
syntactic circuit can be expressed as one of these stream functions, and every such
stream function can be mapped to a syntactic circuit which has the original stream
function as its behaviour.

We also define a category MealyI of Mealy machines lifted to work on lattices,
as a ‘bridge’ between circuits and stream functions. As well as being essential for
showing the soundness and completeness of the denotational semantics, this category
of Mealy machines is nice to have in its own right, as it shows how existing circuit
methodologies [KJ09] are compatible with our rigorous mathematic framework.

Circuits that map to the same stream function are called denotationally equivalent.
Quotienting SCircΣ by denotational equivalence we obtain a category SCircΣ/≈I ; this
is the category against which we will compare our next two semantic theories.

Chapter 5: Operational semantics

The original motivation for a categorical theory of circuits was to create an operational
semantics for digital circuits, bringing techniques from software to hardware. While
such a system was presented in [GJL17a], this only worked on closed circuits with no
non-delay-guarded feedback. One of the main contributions of this chapter is to lift this
restriction using a novel reduction rule for eliminating non-delay-guarded feedback
inspired by the Kleene fixed point theorem. Combined with a generalisation of the
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previous reduction procedure to work on open circuits, this means that any circuit
applied to some inputs can be reduced in order to determine its outputs and next state.

As a result of this, we also present a new formal notion of observational equivalence
on sequential circuits, and show that it is the correct one using the well-known universal
property that it is the largest adequate congruence relation [Gor98]. Quotienting SCircΣ
by observational equivalence gives us another semantic category of circuits SCircΣ/∼I .
By establishing an isomorphism between SCircΣ/≈I and SCircΣ/∼I we show that the
operational semantics is also sound and complete: two circuits have the same behaviour
as stream functions if and only if they reduce to the same outputs for all inputs.

Chapter 6: Algebraic semantics

The previous framework of digital circuits was presented as an algebraic semantics:
the category of circuits was quotiented by certain ‘natural laws’, which were stated as
axioms rather than being derived from any mathematical model. These equations were
not actually enough to show the desired results, so additional quotients of ‘extensional
equivalence’ were used to add in the remaining equalities.

In this thesis our equational theory is guided by the stream semantics, building up
to an algebraic semantics for circuits without having to add any arbitrary quotients.
We try to stick to standard equations on algebraic structures and small ‘local’ equations
detailing the interactions on individual generators, but the nature of digital circuits
means that some larger equations including context are necessary to include. Ultimately,
we define a set of equations EI and show that these equations suffice to bring any
circuit to a pseudo-normal form.

Quotienting SCircΣ by these equations gives us our last semantic category SCircΣ/EI .
Establishing an isomorphism between SCircΣ/≈I and SCircΣ/∼I shows that the algebraic
semantics is sound and complete: two circuits have the same behaviour as stream
functions if and only if they can be translated into each other using the equations.

Chapter 7: Potential applications

We conclude the first part of the thesis by examining some potential applications for
the categorical framework of digital circuits. In particular, we show how one could use
the framework for partial evaluation of circuits, and how we can use (in)equational
reasoning to develop more efficient circuits.

1.5.2 Graph Rewriting for Digital Circuits

While this work marks the first time the semantics of sequential digital circuits have
been given a rigorous mathematical treatment, it is not really feasible to apply the
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Figure 1.12: Categories of terms and cospans of hypergraphs

techniques to anything more than toy circuits by hand; trying to manually apply the
techniques to actual, practical, circuits would quickly become impractical. Instead it is
desirable to have a computer deal with all the hard work for us and reason automatically.
To do this, we need to represent circuits combinatorially as graphs.

Representing the categorical syntax of digital circuits in this way was considered
in [GJL17a] using Kissinger’s framed point graphs [Kis12]. These had several drawbacks:
for example, many framed point graphs correspond to the same string diagram term,
and the category of such graphs is not fully adhesive, a property that provides nice
properties for graph rewriting. In the second part of the thesis, we extend more recent
work on hypergraph string diagram rewriting [BGK+22a; BGK+22b; BGK+22c] so we
can apply it to sequential digital circuits. An overview of the categories involved can
be seen in Figure 1.12.

Chapter 8: String diagrams as hypergraphs

Previous work on string diagram rewriting using hypergraphs showed how terms in a
freely generated symmetric monoidal category SΣ equipped with a special commutative
Frobenius structure Frob correspond to morphisms in a category of cospans of hyper-
graphs Csp𝐷 (HypΣ), and terms without a Frobenius structure correspond to morphisms
in a category of cospans of monogamous acyclic MACsp𝐷 (HypΣ).

We extend this work to terms in a freely generated symmetric traced monoidal
category TΣ; since these terms occupy the space in between regular symmetric monoidal
terms and those with a Frobenius structure, the interpretation as cospans accordingly
sits betweenMACsp𝐷 (HypΣ) and Csp𝐷 (HypΣ) in the form of the category of partial
monogamous cospans of hypergraphs PMCsp𝐷 (HypΣ).

We furthermore extend this to the case where the traced terms are additionally
equipped with a cocommutative comonoid structure CComon, leading to a category of
partial left-monogamous cospans of hypergraphs PLMCsp𝐷 (HypΣ).
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Chapter 9: Graph rewriting

Reasoning on terms interpreted as cospans of hypergraphs is performed using double
pushout (DPO) graph rewriting. The main computational step during this procedure
is identifying a valid pushout complement: the context of the rewrite step. Bonchi et
al. showed that for Frobenius terms, any pushout complement corresponds to a term
rewrite [BGK+22a], and for symmetric monoidal terms exactly one pushout complement
corresponds to a term rewrite [BGK+22b]: the boundary complement.

For the traced case and the traced comonoid case some pushout complements are
valid and some are not. We characterise those that are as traced boundary complements
for the former and traced left-boundary complements for the latter.

Chapter 10: Applications of graph rewriting

Interpreting circuits as hypergraphs introduces the opportunity to evaluate them auto-
matically using graph rewriting. As a first case study, we show how graph rewriting
modulo traced comonoid structure can aid reasoning in settings with a Cartesian struc-
ture, of which the semantic categories of digital circuits are an example.

Subsequently, we illustrate how graph rewriting can be used as a combinatorial
implementation of the operational semantics for digital circuits. This culminates in the
presentation of a graph-rewriting-based hardware description language based on the
work throughout the thesis, with which one can design and (partially) evaluate circuits
in a step-by-step manner.



Chapter 2

A crash course in category theory

When setting about developing a mathematical foundation for something, the first step
is to decide exactly what foundation to pick. As a basis, we will model circuits as terms
constructed by combining primitive generators in sequence and in parallel (Section 2.1).
But terms on their own are not enough, as there may be many terms that represent the
same structure. To use the necessary ‘structural’ equations and identify these terms, we
turn to category theory, in which mathematical structures are expressed using categories:
collections of objects and composable morphisms between them (Section 2.4).

Category theory started out in the early 1940s, when Eilenberg and Mac Lane were
working on problems in algebraic topology. The pair’s original goal was to define what
it meant for a homomorphism to be ‘natural’ [EM42], a concept which nowadays we
would call a natural transformation. To properly define this required the notions of a
functor and a category; the latter was first presented in 1945 [EM45].

It has since turned out that category theory can be used as something of a ‘universal
language’ in mathematics, as many familiar mathematical structures can be expressed
solely in terms of objects and morphisms. This makes category theory an incredibly
powerful tool; rather than having to repeatedly prove things about concrete structures,
abstract results can be instantiated to a plethora of settings.

Example 2.1. A common structure in set theory is the Cartesian product, in which
two sets 𝐴 and 𝐵 can be combined to create a new set 𝐴 × 𝐵 containing pairs of
elements (𝑎, 𝑏). A product is equipped with two functions fst : 𝐴 × 𝐵 → 𝐴 and
snd : 𝐴 × 𝐵 → 𝐵 to extract the first and second element from a pair respectively.

Many properties of Cartesian products are not specific to sets, but arise from the
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presence of the two projections. Category theory has a notion of categorical product
in which sets are generalised to objects and the projection functions to morphisms;
this allows results about products to be applied to a wide range of structures in
addition to the Cartesian product, such as set intersection, greatest lower bounds,
greatest common divisors, and more complicated algebraic structures.

Category theory is especially relevant to computer scientists, and it has shed light
upon topics such as semantics of programming languages [Ole82], databases [Spi12],
probabilistic programming [CJ19; Fri20], and machine learning [FST19; CCG+20].
Category theory also underpins functional programming languages such as Haskell
and OCaml, which use categorical concepts for computational purposes.

Using category theory, a circuit can be modelled as a morphism 𝐴 → 𝐵, but this
is not expressive enough to work with complicated, two-dimensional circuits. By
using functors (Section 2.5) and natural transformations (Section 2.6), we can define
a class of categories known as symmetric monoidal categories [Mac63], in which the
usual sequential composition is joined by parallel composition and morphisms for
swapping inputs (Section 2.7). In digital circuits, we additionally create a feedback loop
by attaching some outputs to inputs. This too can be viewed in a categorical perspective
in the form of a symmetric traced monoidal category [JSV96] (Section 2.8).

To reason with circuits we must additionally make use of a monoidal theory (Sec-
tion 2.9), a set of context-specific equations between the primitive components in
a category. Monoidal theories have been successfully applied to study quantum
protocols [CD08], dynamical systems [BE15; FSR16], signal flow diagrams [BSZ14;
BSZ15; BHPS17; BSZ21], linear algebra [BSZ17; Zan15; BPSZ19; BP22], finite-state
automata [PZ21; PZ22], electrical circuits [BS22], automatic differentiation [AGSZ23],
synthetic chemistry [GLZ23], and first order logic [BDHS24], among many others.

To begin, we will take a meander through the various categorical definitions and
notation that underpin the mathematical work of this thesis. A similar outline can be
found in most category theory textbooks, but inspiration was taken in particular from
the opening of [GZ23].

2.1 Terms

We are interested in using category theory as a tool to study circuits built from some
primitive components, or generators.

Definition 2.2 (Generators). A set of generators Σ is a set equipped with two
functions dom, cod : Σ→ N.
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Generators are the primitive building blocks of terms: their domains and codomains
specify how many input and output wires they have. Terms are defined by combining
these primitives together.

Definition 2.3 (Term). Let Σ be a set of generators. A Σ-term is written 𝑓 : 𝑚 → 𝑛

where 𝑚,𝑛 ∈ N. The set of Σ-terms, denoted Σt, is generated as follows:

𝜙 ∈ Σ
𝜙 : dom(𝜙) → cod(𝜙) ∈ Σt id1 : 1→ 1 ∈ Σt

id0 : 0→ 0 ∈ Σt 𝜎1,1 : 2→ 2 ∈ Σt

𝑓 : 𝑚 → 𝑛 ∈ Σt 𝑔 : 𝑛 → 𝑝 ∈ Σt

𝑓 # 𝑔 : 𝑚 → 𝑝 ∈ Σt

𝑓 : 𝑚 → 𝑛 ∈ Σt 𝑔 : 𝑝 → 𝑞 ∈ Σt

𝑓 ⊗ 𝑔 : 𝑚 + 𝑝 → 𝑛 + 𝑞 ∈ Σt

Σ-terms are constructed recursively. There are four base cases: a generator from Σ

with appropriate inputs and outputs; an identity for single wires, empty space, and a
symmetry for swapping over two wires. The two inductive cases are called composition
and tensor respectively. Intuitively, these can be thought of as generating larger terms
by composing subterms in sequence or parallel.

Although here identities and symmetries only operate on single wires, it is a simple
exercise to define them for larger numbers of wires.

Notation 2.4 (Composite identities). Composite identities id𝑛 are defined induc-
tively for 𝑛 ∈ N as id0 := id0 and id𝑘+1 := id𝑘 ⊗ id1.

Notation 2.5 (Composite symmetries). Composite symmetries 𝜎𝑚,𝑛 for 𝑚,𝑛 ∈ N

are defined inductively as

𝜎0,𝑛 := id𝑛 𝜎𝑚,0 := id𝑚 𝜎𝑘+1,𝑙+1 := id𝑘 ⊗ 𝜎1,𝑙 ⊗ id1 # 𝜎𝑘,𝑙 ⊗ 𝜎1,1 # id𝑙 ⊗ 𝜎𝑘,1 ⊗ id1

Σ-terms will be abbreviated to ‘terms’ when the signature is clear from context.

Example 2.6. Let Σ𝑔 := {AND: 2→ 1,OR: 2→ 1,NOT: 1→ 1} be a set of logic
gate generators. Examples of terms in (Σ𝑔)t include

(OR # id1) ⊗ ((id1 ⊗ NOT) # AND) : 4→ 2
((id1 ⊗ id1) # OR) ⊗ ((id1 ⊗ NOT) # AND) : 4→ 2
((id1 ⊗ id1) ⊗ (id1 ⊗ NOT)) # (OR ⊗AND) : 4→ 2



2.2. String diagrams 16

𝑓
... 𝑛𝑚

... # 𝑔... 𝑝𝑛
... = 𝑔𝑓

... 𝑛𝑚
... 𝑝...

...𝑛

𝑓
... 𝑛𝑚

... ⊗ 𝑔... 𝑞𝑝 ... =
𝑓

... 𝑛𝑚
...

𝑔... 𝑞𝑝 ...

Figure 2.1: Sequential and parallel composition of string diagrams

2.2 String diagrams

Even simple terms described using one-dimensional text strings quickly become indeci-
pherable. Fortunately, terms have a graphical syntax known as string diagrams [JS91]
that makes reading terms far more intuitive. In a string diagram, a generator 𝜙 : 𝑚 → 𝑛

is drawn as a box with𝑚 inputs and 𝑛 outputs 𝜙
... 𝑛𝑚

... , the identity id1 as a wire

, the empty identity id0 as empty space , and the symmetry as two wires

swapping over . Composite terms are drawn as boxes 𝑓
... 𝑛𝑚

... ; composition
is then depicted as horizontal juxtaposition and tensor as vertical juxtaposition; both are
illustrated in Figure 2.1.

Remark 2.7. The direction that the ‘flow’ of string diagrams travels from inputs to
outputs is a hotly-debated topic; in this thesis we adopt the left-to-right approach.
If you disagree, you could rotate the document by ninety degrees or use a mirror.

Example 2.8. Recall the set of generators from Example 2.6. We will draw each
logic gate using the usual notation, i.e.

AND := OR := NOT :=

Now the terms in Example 2.6 can be illustrated as:
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Note that while each term has a very different text string, and is tiled differently
in each diagram, the connectivity of the thick wires is actually the same.

The above example illuminates the drawback of reasoning with term strings or even
the ‘tile’ graphical syntax; there are terms which are ‘morally’ the same but because
of variations in how they are constructed they are not the same term syntactically.
We need some equations to identify terms appropriately; we will soon see how these
equations can be derived using the mathematical structure of a category.

Notation 2.9. So far we have drawn multiple wires in parallel either explicitly or by
using vertical dots. In the interests of clarity, we will now start to collapse multiple
wires into a single wire, annotated with the appropriate number when not clear
from context: so 𝑓𝑚 𝑛 := 𝑓

... 𝑛𝑚
... .

Note that these values 𝑚 or 𝑛 could be zero, and as such can just be drawn as
empty space. It may be useful to explicitly draw wires of zero width for applying
reasoning steps; we will do so with a ‘faded’ wire, like .

2.3 Coloured terms

In Σ-terms, the wires are monochromatic; there is no distinguishing between them.
Sometimes it is advantageous to annotate wires with some information: in the realm
of terms this is known as assigning the wires colours or sorts. When working with
coloured terms, we need to fix the set of colours before specifying a set of generators.

Notation 2.10. We say that a set 𝐶 is countable if it is finite or countably infinite,
i.e. there exists a set 𝑋 ⊆ N such that there is a bijection 𝐶 � 𝑋 .

Remark 2.11. Usually the set of colours is finite, but we will see later in this thesis
how having a colour for every single natural number might be useful.

In the monochromatic world the interface of a generator can be specified solely by
two natural numbers𝑚 and 𝑛, as there are𝑚 input wires and 𝑛 output wires. When
the wires are coloured, more information is needed: the inputs and outputs must be
specified in terms of their colours and their ordering.

Notation 2.12 (Words). Given a set 𝐴, the set of (finite) words of elements of 𝐴
is denoted 𝐴★. Words are written 𝑥0𝑥1𝑥2· · ·𝑥𝑛−1; arbitrary words are written with
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an overline 𝑥,𝑦, 𝑧... ∈ 𝐴★. Given two words 𝑥,𝑦, their concatenation is denoted 𝑥𝑦.
For an element 𝑎 ∈ 𝐴, the concatenation of this element 𝑛 times is written 𝑎𝑛, e.g.
𝑎3 := 𝑎𝑎𝑎. Given a word 𝑥 , its length is denoted |𝑥 |; for 𝑖 < |𝑥 | the 𝑖-th element of
𝑥 is denoted 𝑥 (𝑖), i.e. in word 𝑥 := 𝑎𝑏𝑐, 𝑥 (0) = 𝑎, 𝑥 (1) = 𝑏 and 𝑥 (2) = 𝑐.

Definition 2.13 (Coloured generators). For a countable set 𝐶, a set of 𝐶-coloured
generators Σ is a set equipped with two functions dom, cod : Σ→ 𝐶★.

Coloured terms are generated in the same way as before, but terms can only be
composed if the coloured wires in the interfaces match up.

Definition 2.14 (Coloured terms). For a countable set 𝐶 and a set of 𝐶-coloured
generators, a (𝐶, Σ)-term is written 𝑓 : 𝑚 → 𝑛, where 𝑚,𝑛 ∈ 𝐶★. The set of (𝐶, Σ)-
terms, denoted (𝐶, Σ)t, is generated as the monochromatic set of terms, but with
an identity and symmetry for each 𝑐 ∈ 𝐶, composition between terms whose output
and input words agree on colours, and addition replaced by word concatenation.

Remark 2.15. When the set of colours is a singleton 𝐶 := {•}, the 𝐶-coloured
terms are just the monochromatic terms.

When drawing coloured terms string diagrammatically, the wires that connect the
generators are coloured appropriately.

Example 2.16. Recall the logic gate generators from Example 2.6; let us now say
that the OR gate is rated for a different voltage, so it is no longer compatible with
the other components. We can model this with coloured terms; let 𝐶g := {•, •} be
a set of voltage colours and let Σ+𝑔 := {AND: •• → •,OR: •• → •,NOT: • → •}.

We draw the ‘red’ OR appropriately as . Now we can recreate the diagrams

from Example 2.8 in the coloured setting. Note how all wires attached to the OR
gate must also be red to ensure the colours all match up.



19 Chapter 2. A crash course in category theory

2.4 Categories

Terms are purely syntax, so two terms are only equal if they are constructed in precisely
the same way. As we have already seen, this is far too strong a relation; there may be
many terms that, while constructed in different ways, look the same when drawn out
as a diagram modulo the tiling. We can identify terms that describe the same process
using equations, but which ones?

Example 2.17. Consider the term id𝑚 # 𝑓 , read as ‘do nothing and then run 𝑓 ‘,

and drawn as 𝑓 𝑛𝑚 . Clearly this is the same as 𝑓𝑚 𝑛 but with an

elongated input wire. So one equation we need is 𝑓 𝑛𝑚 = 𝑓𝑚 𝑛 .

It turns out that the required equations are the equations of symmetric monoidal
categories. To grasp how these equations are derived one requires quite a bit of technical
knowledge, so we will build it up one step at a time. We start with a category.

Definition 2.18 (Category). A category C consists of a class of objects ob(C) ; a
class of morphisms C (𝐴, 𝐵) for every pair of objects𝐴, 𝐵 ∈ ob(C); and a composition
operation − ◦ − : C (𝐵,𝐶) × C (𝐴, 𝐵) → C (𝐴,𝐶) such that

• for any object 𝐴 ∈ ob(C) there exists a unique identity morphism id𝐴;
• for any 𝑓 ∈ C (𝐴, 𝐵), it holds that 𝑓 ◦ id𝐴 = 𝑓 = id𝐵 ◦ 𝑓 ; and
• for any morphisms 𝑓 ∈ C (𝐴, 𝐵), 𝑔 ∈ C (𝐵,𝐶) and ℎ ∈ C (𝐶, 𝐷), it holds that
(ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 ).

Amorphism 𝑓 ∈ C (𝐴, 𝐵) is also called an arrow , and will often be written 𝑓 : 𝐴→ 𝐵

accordingly. When clear from context, we will use the notation 𝐴 ∈ C or 𝑓 ∈ C for
objects and morphisms belonging to a particular category.

Remark 2.19. The definition of a category uses classes rather than sets as one
might expect; this is due to size issues and Russell’s paradox regarding the impos-
sibility of the ‘set of all sets’.

We interpret terms as morphisms; one difference here is that we previously used
‘left-to-right’ composition # rather than ‘right-to-left’ composition ◦.

Notation 2.20. Diagrammatic order composition is written as 𝑓 # 𝑔 := 𝑔 ◦ 𝑓 .

The equations of categories are illustrated with string diagram notation in Figure 2.2.
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id𝐴 # 𝑓 = 𝑓 𝑓 # id𝐵 = 𝑓

𝑓 𝐵𝐴 = 𝑓𝐴 𝐵 𝑓𝐴 𝐵 = 𝑓𝐴 𝐵

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ)

𝑔 ℎ 𝐶𝑓𝐴 = 𝑔𝑓𝐴 ℎ 𝐶

Figure 2.2: Equations of a category

2.4.1 Commutative diagrams

Equations in category theory can be expressed using commutative diagrams. For exam-
ple, the unitality and associativity of composition can be illustrated as follows:

𝐴 𝐵

𝐴 𝐵

𝑓

id𝐴
𝑓

id𝐵

𝑓

𝐴 𝐵

𝐶 𝐷

𝑓

𝑔◦𝑓 ℎ◦𝑔

ℎ

We say that the above two diagrams commute precisely because id𝐵 ◦ 𝑓 = 𝑓 = 𝑓 ◦ id𝐴
and (ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 ): no matter which path one takes, the results are equal.

2.4.2 Examples of categories

The definition of a category is quite abstract and might take some getting used to: it
can be helpful to consider some concrete examples.

Example 2.21 (Preorder). A preorder is a reflexive, transitive binary relation ≲
on a set 𝑋 . Any preorder generates a category C≤: the objects are the elements of
𝑋 and C≤ (𝑥,𝑦) contains exactly one morphism if 𝑥 ≤ 𝑦 and none otherwise.

Example 2.22 (Sets). The category Set has sets as objects and functions as mor-
phisms, with composition of functions as composition. There are other categories
with sets as objects, such as Rel, which has relations as morphisms and compo-
sition of relations as morphisms. There is also a category FinSet containing the
finite sets and functions between them.
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Example 2.23 (Posets). A partial order on a set 𝐴 is a reflexive, antisymmetric
and transitive relation ≤ ⊆ 𝐴 × 𝐵. A set equipped with a partial order is called a
partially ordered set, or poset for short. For posets (𝐴, ≤𝐴) and (𝐵, ≤𝐵), a function
𝑓 : 𝐴→ 𝐵 is called monotone if 𝑎 ≤𝐴 𝑎′ implies that 𝑓 (𝑎) ≤𝐵 𝑓 (𝑎′).

Much like how sets form a category, posets form the category Pos, where
ob(Pos) are posets and Pos(𝑋,𝑌 ) are the monotone functions 𝑋 → 𝑌 .

Example 2.24 (Monoids). A monoid is a tuple (𝐴, ∗, 𝑒) where 𝐴 is a set called the
carrier, ∗ : 𝐴 ×𝐴→ 𝐴 is a binary operation called the multiplication, and 𝑒 ∈ 𝐴 is
an element called the unit, such that 𝑎 ∗ 𝑒 = 𝑎 = 𝑒 ∗ 𝑎 for any 𝑎 ∈ 𝐴. A monoid
homomorphism between two monoids (𝐴, ∗, 𝑒𝐴) and (𝐵, +, 𝑒𝐵) is a map ℎ : 𝐴→ 𝐵

such that ℎ(𝑎 ∗ 𝑎′) = ℎ(𝑎) + ℎ(𝑎′) and ℎ(𝑒𝐴) = 𝑒𝐵. There is a category Mon with
monoids as the objects and monoid homomorphisms as the morphisms.

Example 2.25 (Product category). Given two categories C and D, their product
category C ×D is the category with objects defined as ob(C ×D) := ob(C) ×ob(D)
and the morphisms as defined as

(C ×D) ((𝐴,𝐴′), (𝐵, 𝐵′)) := {(𝑓 , 𝑓 ′) | 𝑓 ∈ C (𝐴, 𝐵), 𝑓 ′ ∈ D(𝐴′, 𝐵′)}

For morphisms 𝑓 : 𝐴→ 𝐵,𝑔 : 𝐵 → 𝐶 ∈ C and 𝑓 ′ : 𝐴′→ 𝐵′, 𝑔′ : 𝐵′→ 𝐶′ ∈ D, the
composition of (𝑓 , 𝑔) : (𝐴,𝐴′) → (𝐵, 𝐵′) and (𝑔,𝑔′) : (𝐵, 𝐵′) → (𝐶,𝐶′) is defined as
(𝑔,𝑔′) ◦ (𝑓 , 𝑓 ′) := (𝑔 ◦ 𝑓 , 𝑔′ ◦ 𝑓 ′).

2.4.3 Universal properties

Category theory is an appealing foundation because it can be used to abstract away
from concrete constructions. Rather than proving results about particular objects and
morphisms, we can show how they are an instantiation of some more abstract concept.
One such way we can do this is by considering the properties a morphism might have.

Definition 2.26 (Monomorphism). A morphism 𝑓 : 𝐴→ 𝐵 ∈ C is called a
monomorphism (or simply mono for short) if for any two morphisms 𝑔1, 𝑔2 : 𝐶 → 𝐴,
if 𝑓 ◦ 𝑔1 = 𝑓 ◦ 𝑔2, then 𝑔1 = 𝑔2.

𝐶 𝐴 𝐵

𝑔1

𝑔2

𝑓

One can think of monomorphisms as morphisms which are left-cancellative. There
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is also a way to describe invertible morphisms.

Definition 2.27 (Isomorphism). A morphism 𝑓 : 𝐴→ 𝐵 ∈ C is called an isomor-
phism (or simply iso for short) if there also exists a morphism 𝑓 −1 : 𝐵 → 𝐴 ∈ C
such that 𝑓 −1 ◦ 𝑓 = id𝐴 and 𝑓 ◦ 𝑓 −1 = id𝐵.

𝐴 𝐵 𝐴 𝐵 𝐴 𝐵
𝑓

id𝐴

𝑓 −1 𝑓 −1

id𝐵

𝑓

Example 2.28. In Set, the monomorphisms are the injective functions and the
isomorphisms are the bijective functions.

Often we are concerned with particular constructions in a category; some interaction
of objects and morphisms which has special properties. These are specified in terms
of a universal property: a unique morphism that indicates the ‘best’ way to describe
something. We will first consider universal properties concerning special objects.

Definition 2.29 (Initial object). An object 𝐶 in a category C is initial if, for any
other object 𝑋 ∈ C there exists a unique morphism 𝐶 → 𝑋 .

Example 2.30. In Set, the initial object is the empty set ∅, as there is a unique
function from ∅ to any set 𝑋 , the so-called ‘absurd function’.

Most categorical notions also have a dual, in which all the arrows are flipped. This
means that when defining constructions and proving results about them, we often also
get results for free about the dual case.

Definition 2.31 (Terminal object). An object 𝐶 in a category C is terminal if, for
any other object 𝑋 ∈ C there exists a unique morphism 𝑋 → 𝐶.

Example 2.32. In Set, the terminal object is the set containing a single object ★:
from any set 𝑋 there is a unique function 𝑋 → {★}; namely the function 𝑥 ↦→ ★.

If a category has an initial or terminal object, then it is unique up to unique isomor-
phism; this means that if we have two objects that satisfy the universal property, then
these objects are isomorphic in a unique way.

We will now explore some universal properties that illustrate how common struc-
tures can be expressed in terms of the morphisms between them.
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Definition 2.33 (Product). Given a category C and objects 𝐴, 𝐵 ∈ C, their prod-
uct is an object 𝐴 × 𝐵 equipped with a pair of morphisms 𝑝0 : 𝐴 × 𝐵 → 𝐴 and
𝑝1 : 𝐴 × 𝐵 → 𝐵 called projections such that for every other object 𝑍 with pair of
morphisms 𝑓 : 𝑍 → 𝐴 and 𝑔 : 𝑍 → 𝐵, there exists a unique morphism 𝑢 : 𝑍 → 𝐴 × 𝐵
such that the following diagram commutes:

𝑍

𝐴 𝐴 × 𝐵 𝐵

𝑓
𝑢

𝑔

𝑝0 𝑝1

A category C is said to have products if the product exists for all objects 𝐴, 𝐵 ∈ C.

Again, if a category has a product𝐴×𝐵 then it is unique up to unique isomorphism:
any other construction𝐴×′𝐵 also satisfying the universal property must be isomorphic
to 𝐴 × 𝐵. This means that we are justified in referring to ‘the’ product if one exists.

Example 2.34. The product in Set is the Cartesian product.

The dual of a product is a construction with injections rather than projections.

Definition 2.35 (Coproduct). Given a category C and objects 𝐴, 𝐵 ∈ C, their
coproduct is an object 𝐴 + 𝐵 equipped with a pair of morphisms 𝑖0 : 𝐴→ 𝐴 + 𝐵
and 𝑖1 : 𝐵 → 𝐴 + 𝐵 called injections such that for every other object 𝑍 with pair of
morphisms 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝑍 , there exists a unique morphism 𝑢 : 𝐴 + 𝐵 → 𝑍

such that the following diagram commutes:

𝑍

𝐴 𝐴 + 𝐵 𝐵
𝑖0

𝑓
𝑢

𝑖1

𝑔

A category C is said to have coproducts if the coproduct exists for all pairs of
objects 𝐴, 𝐵 ∈ C.

Example 2.36. The coproduct in Set is the disjoint union.

Finally, we will look at properties showing how pairs of morphisms with a common
domain or codomain can be in some way ‘unified’.
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Definition 2.37 (Pushout). Given a category C and morphisms 𝑓 : 𝐴→ 𝐵 and
𝑔 : 𝐴→ 𝐶, a pushout is an object 𝐷 ∈ C and a pair of morphisms ℎ : 𝐵 → 𝐷 and
𝑘 : 𝐶 → 𝐷 such that for any other pair of morphisms ℎ′ : 𝐵 → 𝑍 and 𝑘′ : 𝐶 → 𝑍

there exists a unique morphism 𝑢 : 𝐷 → 𝑍 , i.e. the following diagram commutes:

𝐴 𝐵

𝐶 𝐷

𝑍

𝑓

𝑔 ℎ
ℎ′

𝑘

𝑘 ′

𝑢

⌝
A category C is said to have pushouts if a pushout exists for any pair of morphisms.

Example 2.38. Set has pushouts: given morphisms 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐴→ 𝐶, the
pushout is the union of 𝐵 and 𝐶 identifying elements with a common preimage in
𝐴. Concretely, let ∼ ⊆ 𝐵×𝐶 be a relation defined as {(𝑏, 𝑐) | ∃𝑎 ∈ 𝐴.𝑏 = 𝑓 (𝑎) ∧𝑐 =
𝑔(𝑎)}. Then the pushout set 𝐷 is defined as 𝐵∪𝐶/∼ with the morphisms ℎ : 𝐵 → 𝐷

and 𝑘 : 𝐶 → 𝐷 sending elements in 𝐵 and 𝐶 to the appropriate element in 𝐷.

A pushout square is normally indicated with a ⌜ symbol as shown above. The dual
of the pushout is a pullback.

Definition 2.39 (Pullback). Given a category C and morphisms 𝑓 : 𝐵 → 𝐴 and
𝑔 : 𝐶 → 𝐴, a pullback is an object 𝐷 ∈ C and a pair of morphisms ℎ : 𝐷 → 𝐵 and
𝑘 : 𝐷 → 𝐶 such that for any other pair of morphisms ℎ′ : 𝑍 → 𝐵 and 𝑘′ : 𝑍 → 𝐶

there exists a unique morphism 𝑢 : 𝑍 → 𝐷, i.e. the following diagram commutes:

𝑍

𝐷 𝐶

𝐵 𝐴

𝑢

𝑘 ′

ℎ′
ℎ

𝑘

⌝

𝑔

𝑓

A category C is said to have pullbacks if a pullback exists for any pair of morphisms.

Example 2.40. Set also has pullbacks: given morphisms 𝑓 : 𝐵 → 𝐴 and 𝑔 : 𝐶 → 𝐴,
the pullback is defined as {(𝑏, 𝑐) ∈ 𝐵 × 𝐶 | 𝑓 (𝑏) = 𝑔(𝑐)} and the maps ℎ : 𝐷 → 𝐵

and 𝑘 : 𝐷 → 𝐶 are defined as the first and second projection respectively.
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Universal properties meanwe do not need to restrict ourselves to a concrete category
when using or proving results; we can instead say, for example, that the result holds in
all categories with products.

2.5 Functors

It is actually quite rare that we are only making use of one category at a time. In
order to compare categories, we need a notion of mapping between them. Such a map
𝐹 : C → D sends an object 𝐴 ∈ C to an object 𝐹𝐴 ∈ D, and a morphism 𝑓 : 𝐴→ 𝐵 ∈ C
to 𝐹 𝑓 : 𝐹𝐴→ 𝐹𝐵. This is generally not a strong enough definition to be useful, so some
additional restrictions must be added to define the notion of a functor.

Definition 2.41 (Functor). Given two categories C and D, a functor 𝐹 : C → D
maps objects and morphisms in C to objects and morphisms in D such that

• 𝐹 (id𝐴) = id𝐹𝐴 for every 𝐴 ∈ ob(C); and
• 𝐹 (𝑔 ◦ 𝑓 ) = 𝐹 (𝑔) ◦ 𝐹 (𝑓 ) for every 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐶.

𝐴 𝐴

𝐹𝐴 𝐹𝐴

id𝐴

𝐹 𝐹

id𝐹𝐴

𝐴 𝐶

𝐵

𝐹𝐵

𝐹𝐴 𝐹𝐶

𝑔◦𝑓

𝑓

𝐹 𝐹𝐹

𝑔

𝐹𝑔

𝐹 (𝑔◦𝑓 )

𝐹 𝑓

The two equations above are known as the functoriality equations; if a map satisfies
these it is said to be functorial.

Functors have a graphical representation as ‘functorial boxes’ [Mel06]; the notation
for applying a functor 𝐹 : C → D to a morphism 𝑓 : 𝑋 → 𝑌 is shown in Figure 2.3,
along with the depictions of the functoriality equations. As always, the wire labels are
optional and will be omitted if unambiguous.

2.5.1 Examples of functors

Many notions in mathematics and computer science can be viewed as functors.

Definition 2.42 (Endofunctor). An endofunctor on category C is a functor C → C.
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𝑓

𝐹

𝐹𝑋 𝐹𝑌𝑋 𝑌

𝐹

𝐹𝑋 𝐹𝑋 = 𝐹𝑋 𝐹𝑋 𝑓

𝐹

𝐹𝑋 𝐹𝑍𝑔 = 𝑓

𝐹

𝐹𝑋 𝐹𝑍𝑔

𝐹

Figure 2.3: Diagrammatic depiction of ‘functorial boxes’, and graphical
equations of functoriality

Example 2.43 (Powerset functor). The notion of powerset can be interpreted as an
endofunctor P : Set→ Set, mapping a set 𝑋 to its powerset P (𝑋 ) and a morphism
𝑓 : 𝑋 → 𝑌 to the function P (𝑋 ) → P (𝑌 ) which applies 𝑓 pointwise.

Example 2.44 (List functor). A functor that crops up frequently in computer
science is the list functor List : Set→ Set, which sends a set 𝑋 to its set of lists
𝑋★, and sends a function 𝑓 : 𝑋 → 𝑌 to the function 𝑓 ★ : 𝑋★→ 𝑌★: which applies
𝑓 to each element of a list.

Example 2.45 (Free monoid). The free construction of a mathematical structure
can be viewed as its most ‘bare-bones’ version. Recall the definition of monoids
from Example 2.24: the set of words 𝑋★ as defined in Notation 2.12 is the carrier
of the free monoid on 𝑋 . This means there is a functor 𝐹 : Set→ Mon (the free
functor) that acts on objects as 𝑋 ↦→ (𝑋★, (𝑣,𝑤) ↦→ 𝑣𝑤, 𝜀) and sends morphisms
𝑋 → 𝑌 to the corresponding monoid homomorphism 𝑋★→ 𝑌★.

There is also a forgetful or underlying functor 𝑈 : Mon→ Set which sends a
monoid (𝑋, ∗, 𝑒) to its carrier set 𝑋 and ‘forgets’ the monoid structure. The functors
𝐹 and 𝑈 form an adjunction, but this is beyond the scope of this thesis.

2.5.2 Functors as morphisms

It is possible to view functors purely as a standalone concept, but the core tenet of
category theory is to view everything in terms of morphisms; functors are no different.

Example 2.46 (Identity functor). A trivial endofunctor for any category C is the
identity functor Id : C → C which acts as the identity on objects and morphisms.
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Example 2.47 (Functor composition). If 𝐹 : C → D and 𝐺 : D→ E are functors
then their composite 𝐺 ◦ 𝐹 : C → E is also a functor.

Identity and (associative) composition are all we need to define a category. Al-
though we cannot define a category containing all categories, we can define a category
containing all ‘small’ categories.

Definition 2.48. A category C is small if ob(C) and C (𝐴, 𝐵) are sets for all 𝐴, 𝐵 ∈ C.

Example 2.49 (Category of categories). Cat is the category in which ob(Cat) are
small categories and Cat(C,D) contains functors C → D. Identity is the identity
functor, and composition is functor composition.

Using the category of categories means we can reason about categories using the
same line of reasoning as for objects and morphisms.

2.5.3 Full and faithful functors

One important way we can class functors is based on how they act on the classes of
morphisms between two objects.

Notation 2.50. Given a functor 𝐹 : C → D, let 𝐹𝐴,𝐵 : C (𝐴, 𝐵) → D(𝐹𝐴, 𝐹𝐵) be the
induced map sending classes of morphisms 𝐴→ 𝐵 in C to the classes of morphisms
𝐹𝐴→ 𝐹𝐵 in D.

Definition 2.51 (Faithful functor [Mac78]). A functor 𝐹 : C → D is faithful if 𝐹𝐴,𝐵
is injective for all 𝐴, 𝐵 ∈ C.

A faithful functor 𝐹 : C → D does not coalesce morphisms: every morphism 𝑓 ∈
C (𝐴, 𝐵) has a unique morphism 𝐹 𝑓 ∈ D(𝐹𝐴, 𝐹𝐵).

Definition 2.52 (Full functor [Mac78]). A functor 𝐹 : C → D is full if 𝐹𝐴,𝐵 is
surjective for all 𝐴, 𝐵 ∈ C.

Every morphism 𝐹𝐴→ 𝐹𝐵 is in the image of a full functor.

Definition 2.53 (Fully faithful functor [Mac78]). A functor 𝐹 : C → D is fully faith-
ful if 𝐹𝐴,𝐵 is bijective for all 𝐴, 𝐵 ∈ C; i.e. the functor is full and faithful.
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Example 2.54. Recall the categories Set and Mon, and the functor𝑈 : Mon→ Set
defined in Example 2.45. 𝑈 is faithful as monoid homomorphisms are just functions,
but it is not full as not all functions are monoid homomorphisms. Note that even
though 𝑈 is faithful, it is not injective on objects because there may be many
monoids with the same carrier set.

Functors can be used to compare categories, and the notions of fullness and faithful-
ness show how exactly two categories are related. One way a category C can be related
to another category D is that the former is the latter with ‘some of the bits taken out’.

Definition 2.55 (Subcategory). Given a category C, a subcategory D of C is a
subclass of the objects in C and a subclass of the morphisms in D such that

• for every object 𝐴 ∈ D, the identity id𝐴 is in D;
• for every morphism 𝑓 : 𝐴→ 𝐵 ∈ D, the source and targets 𝐴 and 𝐵 are in D;

and
• for morphisms 𝑓 : 𝐴→ 𝐵,𝑔 : 𝐵 → 𝐶 ∈ D, the composition 𝑔 ◦ 𝑓 is in D.

These conditions on a subcategory D enforce that D also has the structure of a
category. This means there is an obvious induced functor 𝑆 : D→ C mapping objects
and morphisms in D to the same objects in C; this is called an inclusion functor , and is
often written with a hooked arrow D ↩→ C . An inclusion functor is clearly faithful,
since there cannot be twomorphisms in the subcategory that map to the samemorphism
in the parent category. Inclusion functors that are also full are of particular interest.

Definition 2.56 (Full subcategory). A subcategory D is a full subcategory if its
inclusion functor D → C is full and faithful; i.e. for all objects 𝐴, 𝐵 ∈ D, the
morphisms D(𝐴, 𝐵) = C (𝐴, 𝐵).

Example 2.57. FinSet is a full subcategory of Set, as every function between
finite sets is a morphism in both FinSet and Set. Set is a subcategory of Rel as
every function is a relation, but it is not a full subcategory because there are more
relations 𝐴 ∼ 𝐵 than there are functions 𝐴→ 𝐵.

Sometimes a category is not merely a subcategory of another, but the two categories
are actually (almost) the same.

Definition 2.58. Two categories C and D are isomorphic if there exist functors
𝐹 : C → D and 𝐺 : D→ C such that 𝐺 ◦ 𝐹 = IdC and 𝐹 ◦𝐺 = IdD.

It can be inconvenient to construct the functors in both directions; fortunately
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isomorphism can be shown by constructing just the functor in one direction, as long as
it has the required properties.

Lemma 2.59 ([Mac78]). Two categories C and D are isomorphic if and only if
there exists a fully faithful functor 𝐹 : C → D which is also bijective on objects.

Remark 2.60. Usually, isomorphism of categories is too restrictive; often the
weaker notion equivalence of categories is used, in which the two functors 𝐹 and 𝐺
need only be naturally isomorphic to the identity functor rather than equal. How-
ever, in this thesis it turns out that all the results we need really are strong enough
to be isomorphisms.

2.5.4 Universal properties through functors

Previously we defined some universal properties such as initial objects and pullbacks.
Using functors, these universal constructions can be viewed as special cases of even
more abstract notions: limits and colimits.

Definition 2.61 (Cone). Let J and C be categories, and let 𝐹 : J → C be a
functor. A cone to 𝐹 is an object 𝑁 ∈ C equipped with a family of morphisms
𝜙𝑋 : 𝑁 → 𝐹𝑋 for each 𝑋 ∈ J , such that for each 𝑓 : 𝑋 → 𝑌 ∈ J , 𝐹 𝑓 ◦ 𝜙𝑋 = 𝜙𝑌 .

𝑁

𝐹𝑋 𝐹𝑌

𝜙𝑋 𝜙𝑌

𝐹 𝑓

The limit is the ‘best possible cone’.

Definition 2.62 (Limit). Let J and C be categories, and let 𝐹 : J → C be a
functor. The limit of 𝐹 is a cone to 𝐹 (𝐿, 𝜙) such that for every cone to 𝐹 (𝑁,𝜓 ),
there exists a unique morphism 𝑢 : 𝑁 → 𝐿 such that 𝜙𝑋 ◦ 𝑢 = 𝜓𝑋 for all 𝑋 ∈ J .

𝑁

𝐿

𝐹𝑋 𝐹𝑌

𝜓𝑋 𝜓𝑌
𝑢

𝜙𝑋 𝜙𝑌

𝐹 𝑓

Limits generalise several of the universal constructions we have encountered so far.
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Example 2.63 (Terminal object). When the category J is the empty category, the
only functor 𝐹 : J → C is the empty functor. Since there are no objects in J , a
cone of 𝐹 is just an object 𝑁 , so the limit of 𝐹 is an object 𝐿 to which there is a
unique morphism 𝑁 → 𝐿; the terminal object.

Example 2.64 (Products). When the category J has objects but no morphisms
other than identities, a functor 𝐹 : J → C is one that indexes objects of C by objects
in J . A cone of 𝐹 is an object 𝑁 with morphisms that pick each of these indexed
elements, so the limit of 𝐹 is the product.

Example 2.65 (Pullbacks). Let J be a category containing objects 𝐴, 𝐵, 𝐶 with
non-identity morphisms 𝐵 → 𝐴 and 𝐶 → 𝐴. A cone of 𝐹 : J → C is an object 𝑁
and morphisms 𝑁 → 𝐹𝐴, 𝑁 → 𝐹𝐵 and 𝑁 → 𝐹𝐶, so the limit of 𝐹 is the pullback.

Since limits define so many categorical structures, the ability to define arbitrary
limits in a category makes it a much more appealing setting to work in.

Definition 2.66. For a small category J , a category C has limits of shape J if
every functor 𝐹 : J → C has a limit in C.

Definition 2.67 (Complete category). A category C is complete if it has limits for
all functors 𝐹 : J → C, where J is a small category.

Limits do not generalise all the universal constructions we have seen so far; for the
rest we must flip the arrows and consider the dual version.

Definition 2.68 (Cocone). Let J and C be categories, and let 𝐹 : J → C be a
functor. A cocone to 𝐹 is an object 𝑁 ∈ C equipped with a family of morphisms
𝜙𝑋 : 𝐹𝑋 → 𝑁 for each 𝑋 ∈ J , such that for each 𝑓 : 𝑋 → 𝑌 ∈ J , 𝜙𝑌 ◦ 𝐹 𝑓 = 𝜙𝑋 .

𝑁

𝐹𝑋 𝐹𝑌

𝜙𝑋

𝐹 𝑓

𝜙𝑌

Definition 2.69 (Colimit). Let J and C be categories, and let 𝐹 : J → C be a
functor. The colimit of 𝐹 is a cocone to 𝐹 (𝐿, 𝜙) such that for every other cocone
to 𝐹 (𝑁,𝜓 ), there exists a unique morphism 𝑢 : 𝐿 → 𝑁 such that 𝑢 ◦ 𝜙𝑋 = 𝜓𝑋 for
all 𝑋 ∈ J .
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𝑁

𝐿

𝐹𝑋 𝐹𝑌

𝑢
𝜓𝑋

𝜙𝑋

𝐹 𝑓

𝜓𝑌

𝜙𝑌

Example 2.70. By using the reasoning in Examples 2.63 to 2.65 and reversing the
arrows, it is straightforward to see that initial objects, coproducts, and pushouts
are examples of colimits.

Once again, we often want to work in a setting in which we can construct all
colimits.

Definition 2.71. For a small category J , a category C has colimits of shape J if
every functor 𝐹 : J → C has a colimit in C.

Definition 2.72 (Cocomplete category). A category C is cocomplete if it has
colimits for all functors 𝐹 : J → C, where J is a small category.

It is often the case that we are interested in functors that preserve structure, so we
can exploit it in both categories. Since a lot of structure can be expressed in terms
of limits or colimits, this can be expressed succinctly by saying that a functor merely
preserves these limits or colimits.

Definition 2.73. A functor 𝐹 : C → D preserves all (co)limits if (𝐹𝐿, 𝐹𝜙) is a
(co)limit whenever (𝐿, 𝜙) is a (co)limit.

Sometimes a functor may not preserve all (co)limits but only some of them. For
example, we may talk about 𝐹 being a coproduct-preserving functor . This is defined in
the same way as above: 𝐹 (𝐴 + 𝐵) must itself be a coproduct 𝐹𝐴 + 𝐹𝐵.

2.6 Natural transformations

As we have seen, functors are useful for mapping objects and morphisms from one
category to another in a way that respects the underlying compositional structure. Of
course, there may be many such functors C → D; the logical next step is to consider
maps between functors themselves. These maps are known as natural transformations.
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𝑓

𝐺

𝐺𝐵𝐴 𝐵𝐹𝐴 𝜂𝐴 𝐺𝐴 = 𝑓

𝐺

𝐴 𝐵𝐺𝐴 𝜂𝐵 𝐹𝐵𝐺𝐵

Figure 2.4: Naturality of transformations in string diagram notation

Definition 2.74 (Natural transformation). Given two functors 𝐹,𝐺 : C → D, a nat-
ural transformation 𝜂 : 𝐹 → 𝐺 is a family of morphisms 𝜂𝐴 ∈ D(𝐹𝐴,𝐺𝐴) for each
𝐴 ∈ ob(C), called the components of 𝜂, such that 𝜂𝐵 ◦ 𝐹 𝑓 = 𝐺𝑓 ◦ 𝜂𝐴, i.e. the
following diagram commutes:

𝐴 𝐹𝐴 𝐺𝐴

𝐵 𝐹𝐵 𝐺𝐵

𝑓

𝜂𝐴

𝐹 𝑓 𝐺 𝑓

𝜂𝐵

For functors 𝐹,𝐺 : C → D, a natural transformation 𝜂 : 𝐹 → 𝐺 is a family of mor-
phisms 𝜂𝐴 : 𝐹𝐴→ 𝐺𝐴 ∈ D (the components) for each object 𝐴 ∈ D. One can think of
a natural transformation as a way of inducing morphisms of a certain structure across
an entire category. Graphically, the naturality equation can be seen as how a natural
transformation can be ‘pushed through’ morphisms, as shown in Figure 2.4.

We established that functors are morphisms between categories; in a similar vein
natural transformations are morphisms between functors.

Definition 2.75 (Functor category). Given two categories C and D, a functor
category [C,D] has as objects the functors C → D and as morphisms 𝐹 → 𝐺 the
natural transformations between these functors.

Like with the category of categories, viewing functors in this way allows us to
reason with them in the same way as regular objects and morphisms.

2.6.1 Examples of natural transformations

Natural transformations also often arise across mathematics and computer science.

Example 2.76 (Singleton transformation). Recall the List functor from Exam-
ple 2.44. An example of a natural transformation is the singleton transformation
[−] : Id→ List, which induces a function [−] : 𝑋 → 𝑋★ for each set 𝑋 , defined as
𝑥 ↦→ [𝑥].
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Example 2.77 (Reduce). Recall the functors 𝐹 : Set→ Mon and 𝑈 : Mon→ Set
from Example 2.45. Functors can be composed just like morphisms, so 𝐹 ◦ 𝑈 is
a functor Mon → Mon: such a functor has action (𝑋, ∗, 𝑒) ↦→ (𝑋★, ++, []). The
component of a natural transformation 𝐹 ◦𝑈 → Id at object (𝑋, ∗, 𝑒) is a monoid
homomorphism (𝑋★, ++, []) → (𝑋, ∗, 𝑒), i.e. a function 𝑋★→ 𝑋 .

One example of such a natural transformation is the reduce or fold operation,
which takes a list in 𝑋★ and reduces it to an element of 𝑋 by starting with the unit
𝑒 and multiplying it with each element of the list in turn.

As natural transformations are defined in terms of families of morphisms, they can
inherit properties of the components.

Definition 2.78 (Natural isomorphism). A natural transformation is called a nat-
ural isomorphism if every component is an isomorphism.

2.7 Monoidal categories

The concepts of functors and natural transformations are used to interpret the parallel
composition ⊗. To do this, a special kind of functor known as a bifunctor is used.

Definition 2.79 (Bifunctor). A bifunctor is a functor with a product category as
its domain, i.e. a functor of the form C ×D→ E .

The notation for functor boxes can be extended in order to show how bifunctors
map from two categories into one.

𝑔
𝐹 (𝐴,𝐶) 𝐹 (𝐵, 𝐷)

𝐶 𝐷

𝑓

𝐹

𝐴 𝐵

This suggests that a bifunctor is what we need to model parallel composition.

Definition 2.80 (Monoidal category). A monoidal category is a category C
equipped with a bifunctor − ⊗ = : C × C → C called the tensor product and an
additional object 𝐼 called the monoidal unit, along with natural isomorphisms

• 𝛼𝐴,𝐵,𝐶 : 𝐴 ⊗ (𝐵 ⊗ 𝐶) � (𝐴 ⊗ 𝐵) ⊗ 𝐶 called the associator ;
• 𝜆𝐴 : 𝐼 ⊗ 𝐴 � 𝐴 called the left unitor ; and
• 𝜌𝐴 : 𝐴 ⊗ 𝐼 � 𝐴 called the right unitor
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(𝐴 ⊗ (𝐵 ⊗ 𝐶)) ⊗ 𝐷 𝐴 ⊗ ((𝐵 ⊗ 𝐶) ⊗ 𝐷)

((𝐴 ⊗ 𝐵) ⊗ 𝐶) ⊗ 𝐷 𝐴 ⊗ (𝐵 ⊗ (𝐶 ⊗ 𝐷))

(𝐴 ⊗ 𝐵) ⊗ (𝐶 ⊗ 𝐷)

𝛼𝐴,𝐵⊗𝐶,𝐷

id𝐴⊗𝛼𝐵,𝐶,𝐷𝛼𝐴,𝐵,𝐶⊗id𝐷

𝛼𝐴⊗𝐵,𝐶,𝐷 𝛼𝐴,𝐵,𝐶⊗𝐷

(𝐴 ⊗ 𝐼 ) ⊗ 𝐵 𝐴 ⊗ (𝐼 ⊗ 𝐵)

𝐴 ⊗ 𝐵

𝛼𝐴,𝐼,𝐵

𝜌𝐴⊗id𝐵
id𝐴⊗𝜆𝐵

Figure 2.5: Commutative diagrams for monoidal categories

such that the pentagon and the triangle diagrams in Figure 2.5 commute.

Example 2.81. Set is a monoidal category, with the tensor product defined as the
Cartesian product (𝐴 ⊗ 𝐵 := 𝐴 × 𝐵) and the unit as the singleton set (𝐼 := {•}).

Notation 2.82. We adopt the convention that ⊗ takes precedence over # , i.e.
𝑓 ⊗ 𝑔 # ℎ ⊗ 𝑘 should be bracketed as (𝑓 ⊗ 𝑔) # (ℎ ⊗ 𝑘).

We will use the ⊗ bifunctor extensively through this thesis. For this reason, when
drawing string diagrams for monoidal categories we will forego drawing the (bi)functor
boxes and usually draw wires exclusively in their ‘deconstructed’ state: instead of a
single wire 𝐴 ⊗ 𝐵 we will draw two wires 𝐴 and 𝐵.

𝐴 ⊗ 𝐶 𝐵 ⊗ 𝐷𝑓 ⊗ 𝑔 :=
𝑔

𝐴 ⊗ 𝐶 𝐵 ⊗ 𝐷
𝐶 𝐷

𝑓

⊗

𝐴 𝐵
:=

𝑔𝐶 𝐷

𝑓

⊗

𝐴 𝐵
:=

𝑔𝐶 𝐷

𝑓𝐴 𝐵

The definition of monoidal category we have presented is quite general, particularly
with regards to the natural isomorphisms for unitors and associators. In our setting, it
is normally sufficient for these isomorphisms to hold ‘on the nose’.

Definition 2.83 (Strict monoidal category). A monoidal category is strict if 𝜆, 𝜌
and 𝛼 are identities.

In a strict monoidal category, the unitality and associativity of the tensor hold as
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𝑓 ⊗ id𝐼 = 𝑓 id𝐼 ⊗ 𝑓 = 𝑓

𝑓𝐴 𝐵

= 𝑓𝐴 𝐵
𝑓𝐴 𝐵

= 𝑓𝐴 𝐵

(𝑓 ⊗ 𝑔) ⊗ ℎ = 𝑓 ⊗ (𝑔 ⊗ ℎ) id𝐴 ⊗ id𝐵 = id𝐴⊗𝐵

𝑓𝐴 𝐵

𝑔𝐶 𝐷

ℎ𝐸 𝐹

=

𝑓𝐴 𝐵

𝑔𝐶 𝐷

ℎ𝐸 𝐹

𝐴 𝐴

𝐵 𝐵

= 𝐴 ⊗ 𝐵 𝐴 ⊗ 𝐵

(𝑓 ⊗ 𝑔) # (ℎ ⊗ 𝑘) = (𝑓 # ℎ) ⊗ (𝑔 # 𝑘)

𝑓𝐴

𝑔𝐷

ℎ 𝐶

𝑘 𝐹
=

𝑓𝐴

𝑔𝐷

ℎ 𝐶

𝑘 𝐹

Figure 2.6: Equations of a strict monoidal category

equations, as they do for regular composition in a category. With this in mind, it can be
instructive to view a strict monoidal category in terms of equations: these are illustrated
in Figure 2.6.

2.7.1 Symmetric monoidal categories

We can now construct morphisms by composing them in sequence and in parallel,
but there is no way to cross over the wires that connect boxes together. This can be
achieved by equipping the categorical setting with another natural isormorphism.

Definition 2.84 (Symmetric monoidal category). A symmetric monoidal category
(SMC) is a monoidal category C equipped with a natural isomorphism 𝜎𝐴,𝐵 : 𝐴⊗𝐵 �
𝐵 ⊗ 𝐴 such that the diagrams in Figure 2.7 commute.

As𝜎 is a natural isomorphism, it induces a family ofmorphisms𝜎𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴
for every pair of objects𝐴 and 𝐵. In string diagrams, each such morphism 𝜎𝐴,𝐵 is drawn
as 𝐵

𝐴𝐵
𝐴 : the swapping of wires𝐴 and 𝐵. As with identities, the use of this morphism

is so common that we usually drop the box around it.
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𝐴 ⊗ 𝐼 𝐼 ⊗ 𝐴

𝐴

𝜎𝐴,𝐼

𝜌𝐴 𝜆𝐵

𝐵 ⊗ 𝐴

𝐴 ⊗ 𝐵 𝐴 ⊗ 𝐵

𝜎𝐵,𝐴𝜎𝐴,𝐵

id𝐴⊗𝐵

(𝐵 ⊗ 𝐴) ⊗ 𝐶 𝐵 ⊗ (𝐴 ⊗ 𝐶)

(𝐴 ⊗ 𝐵) ⊗ 𝐶 𝐵 ⊗ (𝐶 ⊗ 𝐴)

𝐴 ⊗ (𝐵 ⊗ 𝐶) (𝐵 ⊗ 𝐶) ⊗ 𝐴

𝛼𝐵,𝐴,𝐶

id𝐵⊗𝜎𝐴,𝐶𝜎𝐴,𝐵⊗id𝐶

𝛼𝐴,𝐵,𝐶

𝜎𝐴,𝐵⊗𝐶

𝛼𝐵,𝐶,𝐴

Figure 2.7: Commutative diagrams for symmetric monoidal categories

Once again, we are primarily concerned with strict symmetric monoidal categories.
The equations of strict symmetric monoidal categories are listed in Figure 2.8.

Example 2.85. Set is a symmetric monoidal category, with 𝜎𝐴,𝐵 : 𝐴 × 𝐵 → 𝐵 ×𝐴
defined as the function 𝜎𝐴,𝐵,(𝑎, 𝑏) = (𝑏, 𝑎).

2.7.2 PROPs

Symmetric monoidal categories are an excellent setting for reasoning modulo ‘structural
equations’. We are especially interested in a subclass of SMCs called PROPs: categories
of PROducts and Permutations.

Definition 2.86 (PROP [Mac65]). A PROP is a strict symmetric monoidal cate-
gory with the natural numbers as objects and addition as tensor product on objects.

PROPs are a good fit for reasoning with string diagrams; as any object 𝑛 is equal to⊗
𝑖<𝑛 1, a morphism𝑚 → 𝑛 is a box with𝑚 incoming wires and 𝑛 outgoing wires.

Definition 2.87. Given a set of generators Σ, let SΣ be the PROP where SΣ(𝑚,𝑛)
is the set of Σ-terms of type 𝑚 → 𝑛 quotiented by the equations of SMCs.

This is known as a category freely generated over Σ, in that all of the morphisms in SΣ
have been ‘generated’ by combining elements of Σ in various ways using composition
and tensor. Crucially, many Σ-terms correspond to the same morphism in SΣ, as the
latter are subject to the equations of SMCs.

In this thesis we will use multiple PROPs to represent different processes; often we
will need to map between them. As PROPs are just special categories the most natural
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𝑓 ⊗ 𝑔 # 𝜎𝐵,𝐷 = 𝜎𝐴,𝐶 # 𝑔 ⊗ 𝑓 𝜎𝐼 ,𝐴 = id𝐴

𝑓𝐴

𝑔𝐶 𝐵

𝐷
=

𝑔 𝐷

𝑓 𝐵𝐶

𝐴
𝐴
𝐼𝐴

𝐼 = 𝐴 𝐴

𝜎𝐴,𝐵 ⊗ id𝐶 # id𝐵 ⊗ 𝜎𝐴,𝐶 = 𝜎𝐴,𝐵⊗𝐶 𝜎𝐴,𝐼 = id𝐴

𝐵

𝐴

𝐶

𝐵

𝐴

𝐶 = 𝐵 ⊗ 𝐶
𝐴𝐵 ⊗ 𝐶

𝐴 𝐴
𝐼𝐴

𝐼 = 𝐴 𝐴

𝜎𝐴,𝐵 # 𝜎𝐵,𝐴 = id𝐴⊗𝐵

𝐵
𝐴 𝐵

𝐴
= 𝐴 ⊗ 𝐵 𝐴 ⊗ 𝐵

Figure 2.8: Equations of a strict symmetric monoidal category

way to do this is by using functors.

Definition 2.88 (PROP morphism). A PROP morphism is a strict symmetric
monoidal functor between two PROPs i.e. a functor that preserves the strict sym-
metric monoidal structure.

As we saw earlier, functors can be composed and there is an identity functor, so
PROPs themselves form a category.

Definition 2.89. Let PROP be the category with PROPs as objects and PROP
morphisms as morphisms.

When we discussed terms we also mentioned the notion of coloured terms where
the wires can be of different colours; appropriately, there are also coloured PROPs.

Definition 2.90 (Coloured PROP). Given a set of colours 𝐶, a 𝐶-coloured PROP
is a strict symmetric monoidal category with the objects as lists in 𝐶★ and tensor
product as word concatenation.
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Remark 2.91. A ‘regular’ PROP as defined in Definition 2.86 is isomorphic to a
coloured PROP with only one colour.

Note that this means the empty list 𝜀 is the unit object in any C-coloured PROP.

Definition 2.92. Given a countable set of colours 𝐶 and 𝐶-coloured generators Σ,
let S𝐶,Σ be the 𝐶-coloured PROP where S𝐶,Σ(𝑚,𝑛) is the set of (𝐶, Σ)-terms of type
𝑚 → 𝑛 quotiented by the equations of SMCs.

Just like regular PROPs, there are morphisms of coloured PROPs and these form a
category.

Definition 2.93. Let CPROP be the category with coloured PROPs as objects and
coloured PROP morphisms as morphisms.

It can also be useful to consider the category of coloured PROPs over a fixed set of
colours 𝐶 .

Definition 2.94. For a countable set of colours 𝐶, let CPROP𝐶 be the category
with 𝐶-coloured PROPs as objects and 𝐶-coloured PROP morphisms as morphisms.

2.8 Reversing the wires

When considering string diagrams for symmetric monoidal categories, there is a strict
notion of causality: it is not possible to create a cycle from the output of a box to its
input, and outputs may only be joined to inputs. This enforces an implicit left-to-right
directionality across the page.

This may not always be desirable: one may wish to model a feedback loop, or
perhaps enforce some condition by unifying two outputs. To do this sort of thing, we
must examine symmetric monoidal categories with some extra structure.

2.8.1 Symmetric traced monoidal categories

First we consider removing the acyclicity condition.

Definition 2.95 (Symmetric traced monoidal category [JSV96]). A symmetric
traced monoidal category (STMC) is a symmetric monoidal category C equipped
with a family of functions Tr𝑋

𝐴,𝐵
(−) : C (𝑋 ⊗ 𝐴,𝑋 ⊗ 𝐵) → C (𝐴, 𝐵) for any three ob-

jects 𝐴, 𝐵 and 𝑋 subject to the equations in Figure 2.9.
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Tightening

Tr𝑋
𝐴,𝐷
(id𝑋 ⊗ 𝑓 # 𝑔 # id𝑋 ⊗ ℎ) = 𝑓 # Tr𝑋

𝐵,𝐶
(𝑔) # ℎ

𝑔
𝐴 𝑓 𝐷ℎ

= 𝑔
𝐴 𝑓 𝐷ℎ

Sliding Yanking

Tr𝑋
𝐴,𝐵
(𝑓 # 𝑔 ⊗ id𝐵) = Tr𝑌

𝐴,𝐵
(𝑔 ⊗ id𝐴 # 𝑓 ) Tr𝑋

𝑋,𝑋

(
𝜎𝑋,𝑋

)
= id𝑋

𝑓
𝑔

𝐵𝐴
= 𝑓

𝑔

𝐴 𝐵 𝑋 𝑋
= 𝑋 𝑋

Vanishing Superposing

Tr𝑋
𝐴,𝐵

(
Tr𝑌
𝑋⊗𝐴,𝑋⊗𝐵 (𝑓 )

)
= Tr𝑋⊗𝑌

𝐴,𝐵
(𝑓 ) Tr𝑋

𝐴,𝐵
(𝑓 ) ⊗ 𝑔 = Tr𝑋

𝐴⊗𝐶,𝐵⊗𝐷 (𝑓 ⊗ 𝑔)

𝑓
𝐵𝐴

𝑌

𝑋

=
𝑓

𝐵𝐴

𝑋 ⊗ 𝑌
𝑓

𝐴 𝐵

𝐶 𝐷𝑔

𝑋

= 𝑓
𝐴 𝐵

𝐶 𝐷𝑔

𝑋

Figure 2.9: Equations of STMCs in string diagram notation

This means that if we have a morphism 𝑓 : 𝑋 ⊗ 𝐴→ 𝑋 ⊗ 𝐵 in a STMC, we also have
the morphism Tr𝑋

𝐴,𝐵
(𝑓 ) : 𝐴→ 𝐵. Traced categories were given the string diagrammatic

treatment in [JSV96], in which the trace is depicted as a loop.

Tr𝑋𝐴,𝐵
(

𝑓𝑋 𝑋
𝐴 𝐵

)
=

𝑓
𝐴 𝐵

𝑋

The equations of STMCs then have pleasant graphical interpretations, shown in Fig-
ure 2.9. Note that as with the equations of SMCs, these equations amount to deforming
the diagram without altering connections between boxes, so do not need to be applied
explicitly when performing equational reasoning.

Usually we will omit the subscripts from Tr𝑋
𝐴,𝐵
(𝑓 ) and write it simply as Tr𝑋 (𝑓 ).

Example 2.96. The classic example of a symmetric traced monoidal category is the
category FinVect𝑘 , with finite dimensional vector spaces over a field 𝑘 as objects,
and linear maps as morphisms. The monoidal product is the tensor product of
vector spaces and the trace is an operation known as the ‘partial trace’.

In the context of computer science, traces are often used to model fixpoints [Has97];
we will examine this in further detail in Section 10.1 as a possible application of our
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𝐴 𝐴 ⊗ 𝐴∗ ⊗ 𝐴

𝐴

𝜂𝐴⊗id𝐴

id𝐴
id𝐴⊗𝜀𝐴

𝐴 𝐴 ⊗ 𝐴∗ ⊗ 𝐴

𝐴

id𝐴⊗𝜂𝐴

id𝐴
𝜀𝐴⊗id𝐴

Figure 2.10: Commutative diagrams of a compact closed category

= =

Figure 2.11: Equations of CCCs string diagram notation

work on traced string diagram rewriting.

2.8.2 Compact closed categories

While wires can flow backwards across the page in a traced category, regular left-to-
right flow must still be in effect at a wire’s endpoints, so outputs must be connected to
inputs. We will now consider another setting in which this is not the case.

Definition 2.97 (Compact closed category). A compact closed category (CCC) is
a symmetric monoidal category in which every object 𝑋 has a dual 𝑋 ∗ equipped
with morphisms called the unit 𝜂𝐴 : 𝐼 → 𝐴∗ ⊗ 𝐴 and the counit 𝜀𝐴 : 𝐴 ⊗ 𝐴∗ → 𝐼

such that the diagrams in Figure 2.10 commute.

In string diagrams, the dual is drawn as a wire flowing from right-to-left instead of
left-to-right; when labelling wires with objects we will drop the notation for duals and
recover the information solely from directionality of the wires. The unit and counit
‘bend’ wires: the unit is drawn as

𝐴
𝐴∗ and the counit as

𝐴∗
𝐴 . As a result of this

units and counits are often referred to as cups and caps respectively. The two equations
of compact closed categories are depicted as in Figure 2.11; this should provide some
insight as to why they are often referred to as snake equations.

There are some cases where the actual directionality of wires is irrelevant; we only
care about the ability to bend wires.

Definition 2.98 (Self-dual compact closed category). A compact closed category
is self-dual if for every object 𝐴, 𝐴∗ := 𝐴.

In a self-dual compact closed category, we do not need to label wires with arrows.
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2.8.3 Traced vs compact closed

The graphical notation is particularly suggestive of links between the trace, the cup
and the cap. This is no coincidence, as there is a well-known result that allows one to
construct a trace in a compact closed setting.

Proposition 2.99 (Canonical trace [JSV96, Prop. 3.1]). Given a compact closed
category C, a trace on C can be constructed as follows:

Tr𝑋 (𝑓 ) := 𝜂𝑋 ⊗ id𝐴 # id𝑋 ∗ ⊗ 𝑓 # (𝜎𝑋 ∗,𝑋 # 𝜀𝑋 ) ⊗ id𝐵

𝑓
𝐴 𝐵

𝑋

This is called the canonical trace.

In this thesis we are primarily concerned with traced categories, but a plethora of
related work is based in the compact closed realm. The canonical trace allows us to
adapt existing results for our setting as well.

Remark 2.100. It is also possible to consider the other direction: using the Int-
construction [JSV96], given any STMC C one can construct a compact closed
category Int(C). However, this will not be of relevance to us.

2.8.4 Adding more structure

While working in a traced or compact closed category allows one to model more
processes than working in a vanilla symmetric monoidal category, it is by no means
the only way in which categories can have structure. However, when stacking multiple
structures on top of each other, we must be careful that we do not accidentally create
something unwanted.

One common structure in a category is finite products, which were discussed in
Definition 2.33.

Theorem 2.101 ([Hou08, Thm. 1]). If a compact closed category has finite prod-
ucts then it also has finite coproducts.

It may not be the case that we want coproducts, so in this case a compact closed
category is not suitable. On the other hand, adding structure to a category can cause it
to become trivial: it can only have one object and one morphism. This can arise when
enforcing more structure on the tensor product.
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Definition 2.102 (Cartesian category). A monoidal category is Cartesian if its
tensor product is given by the category-theoretic product.

Lemma 2.103. In a Cartesian category, the monoidal unit is the terminal object.

Proof. We must show that any arrow 𝑓 : 𝐴→ 𝐼 is unique. Using the left unitor
𝜆𝐴 : 𝐴→ 𝐼 ×𝐴 and the projection maps 𝜋0 : 𝐼 ×𝐴→ 𝐼 and 𝜋1 : 𝐼 ×𝐴→ 𝐴, we can
construct the following diagram:

𝐴

𝐼 𝐼 ×𝐴 𝐴

𝑓
𝜆

id𝐴

𝜋0 𝜋1

By the universal property of the product, any morphism 𝑓 : 𝐴→ 𝐼 can be uniquely
factored as 𝜆 # 𝜋0.

Accordingly, the unique maps !𝐴 : 𝐴→ 𝐼 are drawn string diagrammatically as ,
which will help with reasoning.

Proposition 2.104. If a compact closed category is Cartesian, then it must be
trivial i.e. it must have only one object and morphism.

Proof. We show that any object 𝐴 is isomorphic to the monoidal unit 𝐼 by proving
that the composites 𝐴 → 𝐼 → 𝐴 and 𝐼 → 𝐴 → 𝐼 are both the identity. For the
former, !𝐴 : 𝐴→ 𝐼 is unique because 𝐼 is the terminal object, and 𝐼 → 𝐴 is uniquely
determined to be 𝜂𝐴 # 𝜋1 by the universal property of the product.

𝐼

𝐴∗ 𝐴∗ ×𝐴 𝐴

𝑓
𝜂𝐴

id𝐴

𝜋0 𝜋1

So we must show that !𝐴 # 𝜂𝐴 # 𝜋0 = id𝐴. This is clear when using string
diagrams, noting that the cap is equal to the unique morphism !𝐴×𝐴∗ : 𝐴 ×𝐴∗ → 𝐼 .

= = =

The latter equality holds because there is exactly one morphism 𝐼 → 𝐼 . So any
object 𝐴 is isomorphic to 𝐼 .

This means that if we want to reason about wires going backwards in Cartesian
categories, we must do so in a traced setting.
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2.9 Monoidal theories

So far we have only concerned ourselves with structural equations: equations that show
how the same term can be constructed using different combinations of composition,
tensor, the identity and symmetry. However, these only serve as a form of housekeeping:
the true ‘computational content’ of processes comes from equations that show how the
generators interact with each other. These equations are provided by a monoidal theory.

Definition 2.105. An equation is a pair of terms with the same domain and
codomain.

Definition 2.106 (Monoidal theory). A monoidal theory is a tuple (Σ, E) where Σ

is a set of generators and E is a set of equations.

An equation 𝑓 = 𝑔 in a monoidal theory identifies the two morphisms 𝑓 and 𝑔, so
that they are actually equal. When reasoning with a monoidal theory, we therefore
need to work in a category subject to this identification of morphisms.

Definition 2.107 (Quotient category). Given a category C and a set of equations
E between morphisms in C with the same source and target, the quotient category
C/E is the category in which ob(C/E) := ob(C) and (C/E) (𝑋,𝑌 ) := C (𝑋,𝑌 )/E .

In a quotient category C/E the morphisms are the equivalence classes of morphisms
in C modulo the equations in E .

Definition 2.108. Given a monoidal theory (Σ, E), let SΣ,E := SΣ/E .

When the set of equations E is empty, SΣ,∅ = SΣ, and we recover an ordinary PROP.
We can also use the same procedure to define coloured monoidal theories.

Definition 2.109 (Coloured monoidal theory). A coloured monoidal theory is a
tuple (𝐶, Σ, E) where 𝐶 is a countable set of colours, Σ is a set of 𝐶-coloured
generators, and E is a set of equations.

Definition 2.110. Given a coloured monoidal theory (𝐶, Σ, E), let S𝐶,Σ,E := S𝐶,Σ/E .

2.9.1 Case study: commutative monoids

Monoidal theories for PROPs can be used to reasonwithmany structures inmathematics.
As we have seen, viewing terms in terms of diagrams rather than text strings is far
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more intuitive, so we will often forgo writing the terms at all and reason exclusively
using diagrams. This extends to defining generators, which allows us to give them
suggestive graphical representations rather than having to stick to a symbol with some
domain and codomain.

As an example, we will explore the monoidal theory of commutative monoids; using
the graphical notation the intended behaviour of the two generators is much clearer.

Definition 2.111 (Commutative monoids). The monoidal theory of commutative
monoids is (ΣCMon, ECMon), where ΣCMon := { , } called the multiplication
and the unit respectively, and ECMon comprises the equations

= (left unitality) = (associativity)

= (commutativity)

We write CMon := SΣCMon,ECMon .

The equations describe the properties of the multiplication: it is unital with respect
to the unit; it is associative; and it is commutative. These equations could be described
textually, but the string diagrams provide intuitive visual interpretations; often it is
insightful to reason diagrammatically.

Example 2.112 (Right unitality). = is a valid equation in CMon.

Proof. (†)
= = =

Note that the first step (†) of the proof is performed solely by deforming the string
diagram; this is permitted so long as connectivity is preserved. Deforming the string
diagram corresponds to implicitly applying equations of symmetric monoidal categories.
These explicit steps are shown below, with the unit wire in grey:

unitality of #
=

self-inverse
=

naturality of 𝜎
=

unitality of 𝜎
=

unitality of #
=

Already much more verbose than the simple deformation, this does not even take
into account the repeated applications of associativity of both composition and tensor
required if reasoning in the term language. If we write as 𝜇 and as 𝜂, then
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the proof on terms becomes:

id1 ⊗ 𝜂 # 𝜇 = id1 ⊗ (𝜂 # id1) # 𝜇 unitality of #

= (id1 # id1) ⊗ (𝜂 # id1) # 𝜇 unitality of #

= ((id1 ⊗ 𝜂) # (id1 ⊗ id1)) # 𝜇 functoriality of ⊗
= ((id1 ⊗ 𝜂) # (𝜎𝑛,𝑛 # 𝜎𝑛,𝑛)) # 𝜇 𝜎 is self inverse
= (((id1 ⊗ 𝜂) # 𝜎𝑛,𝑛) # 𝜎𝑛,𝑛) # 𝜇 associativity of #

= ((𝜎𝜀,𝑛 # (𝜂 ⊗ id1)) # 𝜎𝑛,𝑛) # 𝜇 naturality of 𝜎
= ((id1 # (𝜂 ⊗ id1)) # 𝜎𝑛,𝑛) # 𝜇 unitality of 𝜎
= ((𝜂 ⊗ id1) # 𝜎𝑛,𝑛) # 𝜇 unitality of #

= (𝜂 ⊗ id1) # (𝜎𝑛,𝑛 # 𝜇) associativity of #

= (𝜂 ⊗ id1) # 𝜇 commutativity of 𝜇
= id1 left unitality of 𝜇

This is already far more verbose than the string diagram proof, but the term notation
also blocks the insight required to make a proof step, which is often much easier to see
in the string diagrammatic representation.
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Chapter 3

Syntax

Our soup du jour is that of sequential synchronous digital circuits constructed from
primitive components such as logic gates or transistors. These circuits are sequential as
they have a notion of state: outputs can be impacted by inputs in previous cycles rather
than solely those in the current cycle, and synchronous because their state changes in
time with some global clock.

Remark 3.1. Digital (electric) circuits are not to be confused with electronic cir-
cuits of switches and resistors. Essentially, the difference boils down to the differ-
ence between traced categories and compact closed categories: digital circuits have
a clear notion of causality whereas electronic circuits are relational in nature. For
a study of the latter, see [BS22].

Remark 3.2. The content of this section is a refinement of [GKS24, Section 2].

3.1 Circuit signatures

To construct circuits, we define a category in which a morphism𝑚 → 𝑛 is a circuit
with 𝑚 inputs and 𝑛 outputs. Rather than restricting to any particular gate set, we
parameterise a given category of circuits over a circuit signature containing details
about the available components.
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Definition 3.3 (Circuit signature, value, primitive symbol). A circuit signature Σ is
a tuple (V, •,P, dom, cod) where V is a finite set of values, • ∈ V is a disconnected
value, P is a (usually finite) set of primitive symbols, dom : P → N is an arity
function and cod : P → N is a coarity function.

A particularly important signature, and one which we will turn to for the majority
of examples in this thesis, is that of gate-level circuits.

Example 3.4 (Gate-level circuits). The circuit signature for gate-level circuits is
ΣB := (VB,⊥,PB, domB, codB), where VB := {⊥, f, t,⊤}, respectively representing no
signal, a false signal, a true signal and both signals at once, PB := {AND,OR,NOT},
domB := AND ↦→ 2,OR ↦→ 2,NOT ↦→ 1 and codB := − ↦→ 1,

Remark 3.5. Using four values may come as a surprise to those expecting the
usual ‘true’ and ’false’ logical values. This logical system is an old idea going back
to Belnap [Bel77] who remarked that this is ‘how a computer should think’. Rather
than just thinking about how much truth content a value carries, the four value
system adds a notion of information content: the ⊥ value is no information at all
(a disconnected wire), whereas the ⊤ value is both true and false information at
once (a short circuit).

3.2 Combinational circuits

Before diving straight into sequential circuits, we will define a category of combinational
circuits. These are circuits with no state; they compute functions of their inputs.

Definition 3.6 (Combinational circuit generators). Given a circuit signature Σ =

(V, •,P, dom, cod), let the set ΣCCirc of combinational circuit generators be defined
as the set containing dom(𝑔) cod(𝑔)𝑔 for each 𝑔 ∈ P , , , , and

. We write CCircΣ for the freely generated PROP SΣCCirc .

Each primitive symbol 𝑝 ∈ P has a corresponding generator in CCircΣ. The
remaining generators are structural generators for manipulating wires: these are present
regardless of the signature. In order, they are for introducing wires, forking wires, joining
wires and eliminating wires.
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Example 3.7. The gate generators of CCircΣB are , , and .

When drawing circuits, the coloured backgrounds of generators will often be omitted
in the interests of clarity. Since the category is freely generated, morphisms are defined
by juxtaposing the generators in a given signature sequentially or in parallel with
each other, the identity and the symmetry. Arbitrary combinational circuit morphisms
defined in this way are drawn as light boxes 𝑓𝑚 𝑛 .

Notation 3.8. The structural generators are only defined on single bits, but it is
straightforward to define versions for arbitrary bit wires. Much like we often draw
multiple wires as one (Notation 2.9), we can also draw these ‘thicker’ constructs
in a similar way to the single-bit versions:

𝑛 𝑛
𝑛
𝑛

𝑛
𝑛
𝑛

𝑛

These composite constructs are defined inductively over the width of the wires.

0 0
0 :=

𝑛 + 1 𝑛 + 1
𝑛 + 1 :=

𝑛
𝑛

1 1

1
𝑛

0 := 𝑛 + 1 := 𝑛
1

00
0 :=

𝑛 + 1𝑛 + 1
𝑛 + 1 :=

𝑛
𝑛

11

1
𝑛

0 := 𝑛 + 1 := 𝑛
1

Remark 3.9. As mentioned during Notation 2.9, wires of zero width are usually
drawn as empty space; in a similar fashion the zero width fork, join, and elimination
constructs can be drawn as empty space or using ‘faded’ wires.

Example 3.10 (More logic gates). The AND, OR, and NOT gates are not the
only logic gates used in circuit design. A NAND gate acts as the inverse
of an AND gate: it outputs true if none of the inputs are true. Similarly, a NOR
gate is the inverse of an OR gate. These two gates can be constructed in
terms of the primitive gates in ΣB:

:= :=

Another type of gate is the XOR gate , which outputs true if and only
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if exactly one of the inputs is true. In CCircΣB this is constructed as

:= = .

Example 3.11 (Half adder). The XOR gate is used in a classic combinational
circuit known as a half adder, the basic building block of circuit arithmetic. A half
adder takes two inputs and computes their sum modulo 2 and the resulting carry.
That is to say, 0 + 0 has sum 0 and carry 0, 1 + 0 and 0 + 1 have sum 1 and carry 0,
and 1 + 1 has sum 0 and carry 1.

The sum is computed using an XOR gate and the carry by an AND gate. The
design of a half adder along with its construction in CCircΣB is shown below.

A
B S

C
=

3.3 Sequential circuits

Combinational circuits compute functions of their inputs, but have no internal state.
This is all very well for doing simple calculations, but for all but the most simple of
circuits we need to be able to havememory. As we have mentioned earlier, such circuits
are called sequential circuits.

Circuits gain state with delay and feedback. The latter means we need to move into
a symmetric traced monoidal category.

Definition 3.12 (Sequential circuits). For a circuit signature Σ with value set V,
let SCircΣ be the STMC freely generated over the generators of CCircΣ along with
new generators 𝑣 for each 𝑣 ∈ V \ •, and a generator .

The first set of generators are instantaneous values for each value in V \ •. Value
generators are intended to be interpreted as an initial state: in the first cycle of execution
they will emit their value, and produce the disconnected • value after that. This is why
there is no • value generator; instead it is a combinational generator intended to
always produce the • value.
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Notation 3.13. Although is itself not a sequential value, when we refer
to an arbitrary value 𝑣 , 𝑣 can be any value in V including •. For a word of
values 𝑣 ∈ V𝑛 (again possibly including •), we may draw multiple value generators
collapsed into one as 𝑛𝑣 , defined inductively over 𝑣 as

0𝜀 := 𝑛 + 1𝑣𝑤 :=
𝑣

𝑤 𝑛

Example 3.14. The ‘values’ of SCircΣB are , f , t , ⊤ ; the first is a
combinational generator and the latter three are sequential.

The delay component is the opposite of a value; in the first cycle of execution it is
intended to produce the • value, but in future cycles it outputs the signal it received in
the previous cycle.

Remark 3.15. While the mathematical interpretation of a delay is straightforward,
the physical aspect of a digital circuit it models is less clear. An obvious interpreta-
tion could be that the delay models a D flipflop in a clocked circuit, so the delay is
one clock cycle. A more subtle interpretation is the ‘minimum obervable duration’;
in this case the delay models inertial delay on wires up to some fixed precision.

Notation 3.16. Like values, we can derive delay components for arbitrary-bit wires,
drawn like 𝑛𝑛 .

00 := 𝑛 + 1𝑛 + 1 :=
𝑛𝑛

Often one may also want to think about delays with some explicit ‘initial value’,
like a sort of register. This is so common that we introduce special notation for it.

Notation 3.17 (Register). For a word 𝑣 ∈ V𝑚, let 𝑣 := 𝑣 .

To distinguish them from combinational circuits, arbitrary sequential circuit mor-
phisms are drawn as green boxes 𝑓𝑚 𝑛 .

Example 3.18 (SR latch). A sequential circuit one might come across early on
in an electronics textbook is the SR NOR latch, one of the simplest registers. A
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possible design and interpretation in SCircΣB are illustrated below.

R

S

Q

Q

SR NOR latches are used to hold state. They have two inputs: Reset (R) and
Set (S), and two outputs Q and Q which are always negations of each other. When
Set receives a true signal, the Q output is forced true, and will remain as such even
if the Set input stops being pulsed true. It is only when the Reset input is pulsed
true that the Q output will return to false. (It is illegal for both Set and Reset to
be pulsed high simultaneously; this issue is fixed in more complicated latches).

SR latches work because of delays in how gates and wires transmit signals; one
of the feedback loops between the two NOR gates will ‘win’. We can model this
in SCircΣ by using a different number of delay generators between the top and
the bottom of the latch. We have opted for just the one because otherwise the
upcoming examples become excessively complicated, but any number would do, so
long as the top and bottom differ.

3.4 Generalised circuit signatures

In a circuit signature, gates are assigned a number of input and output wires. This serves
us well when we want to model lower level circuits in which we really are dealing with
single-bit wires. However, when designing circuits it is often advantageous to work at
a higher level of abstraction with ‘thicker’ wires carrying words of information. For
example, the values in the circuits could be used to represent binary numbers.

This can still be modelled in SCircΣ ‘as is’ by using lots of parallel wires to connect
to the various primitives, but this can get messy with wires all over the place. Instead,
we will introduce a generalisation of circuit signatures in which these thicker buses of
wires are treated as first-class objects.

Definition 3.19 (Generalised circuit signature). A generalised circuit signature Σ is
a tuple (V, •,P, dom, cod) where V is a finite set of values, • ∈ V is a disconnected
value, P is a (usually finite) set of gate symbols, dom : P → N★

+ is an arity function
and cod : P → N★

+ is a coarity function.

In a generalised circuit signature, primitives are typed with input and output words
rather than just natural numbers.
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Example 3.20. The generalised circuit signature for simple arithmetic circuits is
Σ+B :=

(
VB,⊥,P+B, dom

+
B, cod

+
B

)
, where

PB := {AND𝑘,𝑛,OR𝑘,𝑛,NOT𝑛, add𝑛 | 𝑛 ∈ N+}

dom+B(AND𝑘,𝑛) := [𝑛 | 𝑖 < 𝑘] dom+B(OR𝑘,𝑛) := [𝑛 | 𝑖 < 𝑘]

dom+B(NOT𝑛) := [𝑛] dom+B(add𝑛) := [𝑛, 𝑛]

cod+B := AND𝑘,𝑛 ↦→ [𝑛],OR𝑘,𝑛 ↦→ [𝑛],NOT𝑛 ↦→ [𝑛], add𝑛 ↦→ [𝑛]

The gates AND𝑘,𝑛 and OR𝑘,𝑛 are gates that operate on 𝑘 input wires of width 𝑛;
similarly the NOT𝑛 gate operates on input wires of width 𝑛. The add𝑛 component
represents an adder that takes as input two 𝑛-bit wires and outputs their 𝑛-bit sum.

Just like a monochromatic circuit signature generates monochromatic PROPs, a
generalised circuit signature generates N+-coloured PROPs.

Definition 3.21. For a generalised circuit signature Σ, let the set ΣCCirc+ of gen-
eralised combinational circuit generators be defined as the set containing

dom(𝑔) cod(𝑔)𝑔 for each 𝑔 ∈ P

𝑛 𝑛
𝑛
𝑛

𝑛
𝑛
𝑛

𝑛 𝑛
1
1... 𝑛 𝑛

1
1 ...𝑛 for each 𝑛 ∈ N+

We write CCirc+Σ for the freely generated N+-coloured PROP SΣCCirc+ .

Most of the generators in CCirc+Σ are fairly straightforward generalisations of the
primitives in CCircΣ to act on each colour (width) of wires. The only new generators
are the bundlers at the end of the bottom row; their intended meaning is that they can
be used to split and combine bundles of wire buses into bundles with different widths.
These constructs were first proposed by Wilson et al in [WGZ23] as a notation for
non-strict categories. We take inspiration from their observation that a similar idea
could also be applied to strict categories.

Example 3.22 (ALU). The computation of a CPU is performed by an arithmetic
logic unit, or ALU for short. An ALU takes some input wires of a fixed width and
performs an operation on them given some control signal. While ALUs can often
perform many different operations, we will look at an example operating on four-
bit wires that performs a bitwise AND operation when the control is false, and an
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addition when the control is true. This ALU will also produce an output indicating
if the sum is zero, and the sign of the sum; these auxiliary outputs only produce
useful output when the addition operation is selected.

4
4

+ 4

1

4

1 1
1

4

4

4

4 1

To apply the single-bit control to the four-bit AND gates, the top bundler and
forks are used to create a wire containing only the original bit.

The sum is zero if all of the bits are false. To determine this, the OR1,4 gate
folds the four-bit sum into a one-bit value which is true if at least one of the bits
is true. The NOT1,1 inverts the output to produce true if there are no true bits.

In two’s complement representation, the most significant bit indicates if the
sum is negative. To model this, the lower bundler splits the four-bit sum into its
constituent bits, discarding the least significant three.

Sequential circuits are generalised in the same way.

Definition 3.23. For a generalised circuit signature Σ, let the set ΣSCirc+ of gener-
alised sequential circuit generators be the set of generalised combinational circuit
generators along with 𝑛𝑣 for each 𝑛 ∈ N+ and 𝑣 ∈ V𝑛, and 𝑛𝑛 for each
𝑛 ∈ N+. We write SCirc+Σ for the freely generated PROP TΣSCirc+ .

Most of the upcoming results will be shown for the monochromatic case, as the
proofs are more elegant. However, most of the results also generalise to the coloured
case, and this will be remarked upon throughout.



Chapter 4

Denotational semantics

Circuits in SCircΣ are just syntax; they have no behaviour (or semantics), assigned to
them. A semantics for digital circuits relates circuits which have ‘the same behaviour
given some interpretation’. But there is not just one way to construct such a relation.
In this thesis we will examine three such ways: a denotational semantics, an operational
semantics and an algebraic semantics. Each approach comes with advantages and draw-
backs; skillful use of all three will lead to a powerful, fully compositional, perspective
on sequential circuits.

Although each semantics relation is constructed differently, they must relate the
same circuits; the behaviour of a circuit should not be different depending on which
lens we are viewing it through. Formally, this means that each semantics is sound and
complete with respect to the others; two circuits 𝑓𝑚 𝑛 and 𝑔𝑚 𝑛 are related by
one semantics if and only if they are related by the others.

First of all we will define the denotational semantics of digital circuits, which will act
as the gold standard against which the other semantics will be compared. Denotational
semantics is the notion of assigning meaning to structures using values in some semantic
domain: a partially ordered set with some extra structure. The idea is an old one in
computer science, going back to the work of Scott and Strachey [Sco70; SS71].

Example 4.1. Consider a language of mathematical expressions defined as follows:

𝑛 ∈ 𝑁 ::= 0 | 1 | 2 | · · · 𝑒 ∈ 𝐸 ::= 𝑎𝑑𝑑 𝑒 𝑒 |𝑚𝑢𝑙 𝑒 𝑒 | 𝑛

To define a denotational semantics for terms 𝐸 in this language, we need to pick a
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semantic domain for the denotations of terms to belong to. An obvious one here
is the natural numbers N; given a term 𝑒 ∈ 𝐸, we write J𝑒K for its denotation in N.
For each 𝑛 ∈ 𝑁 , J𝑛K is the corresponding natural number, and the operations are
interpreted as J𝑎𝑑𝑑 𝑒1 𝑒2K = J𝑒1K + J𝑒2K and J𝑚𝑢𝑙 𝑒1 𝑒2K = J𝑒1K · J𝑒2K respectively.

The above example illustrates quite nicely how a denotational semantics should be
compositional; the denotations of a composite term should be constructed by combining
the denotations of its components.

Remark 4.2. The content of this section is a refinement of [GKS24, Section 3].

4.1 Denotational semantics of digital circuits

Now that we comprehend what exactly denotational semantics is, we turn to our goal
of defining a denotational semantics for digital circuits. We will interpret digital circuits
as a certain class of stream functions, functions that operate on infinite sequences of
values. This represents how the output of a circuit may not just operate on the current
input, but all of the previous ones as well.

Remark 4.3. In [MSB12], the semantics of digital circuits with delays and cycles
are presented using timed ternary simulation, an algorithm to compute how a se-
quence of circuit outputs stabilises over time given the inputs and value of the
current state. This differs from our approach as we assign each circuit a concrete
stream function describing its behaviour, rather than having to solve a system of
equations in terms of the gates inside a circuit in order to determine its behaviour.

4.1.1 Interpreting circuit components

Before assigning stream functions to a given circuit in SCircΣ, we will first decide
how to interpret the individual components of a given circuit signature. This is crucial
because a denotational semantics is defined compositionally; eventually we will need to
refer to the interpretations of particular components.

First we consider the interpretation of the values that flow through the wires in our
circuits. In the denotational semantics the set of values will need to have a bit more
structure, as it must be ordered by how much information each value carries.



57 Chapter 4. Denotational semantics

Definition 4.4 (Partially ordered set). A partially ordered set, or poset for short,
is a set 𝐴 equipped with a reflexive, antisymmetric, and transitive relation ≤, i.e.

• for all 𝑎 ∈ 𝐴, 𝑎 ≤ 𝑎;
• for all 𝑎, 𝑏 ∈ 𝐴, if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏; and
• for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 then 𝑎 ≤ 𝑐.

A poset (𝐴, 𝑙𝑒𝑞) is called a finite poset if 𝐴 is finite.

Definition 4.5 (Least and greatest elements). In a poset (𝐴, ≤), a least element
is an element ⊥ ∈ 𝐴 such that for all elements 𝑦 ∈ 𝐴, ⊥ ≤ 𝑦. Similarly, a greatest
element is an element ⊤ ∈ 𝐴 such that for all elements 𝑥 ∈ 𝐴, 𝑥 ≤ ⊤.

Example 4.6. The natural numbers N are a poset ordered in the usual way; they
have a least element 0 but not a greatest element. However, any finite subset of
the natural numbers does have a maximal element.

In our context of digital circuits the least and greatest elements respectively represent
signals with a complete lack of information and every piece of information at once.
However, we need to add more structure than just this; given two signals we want a
way to be able to combine their information into one signal.

Definition 4.7 (Lower and upper bounds). Given a poset (𝐴, ≤), a lower bound
of a subset 𝐵 ⊆ 𝐴 is an element 𝑥 ∈ 𝐵 such that for all 𝑏 ∈ 𝐵, 𝑥 ≤ 𝑏. Similarly, an
upper bound of 𝐶 ⊆ 𝐴 is an element 𝑦 ∈ 𝐶 such that for all 𝑏 ∈ 𝐵, 𝑏 ≤ 𝑦.

We are interested in the ‘closest’ lower and upper bounds.

Definition 4.8 (Meet and join). Given a poset (𝐴, ≤), a lower bound 𝑥 of 𝐵 ⊆ 𝐴 is
called an meet (or infimum, or greatest lower bound) if for all lower bounds 𝑏 ∈ 𝐵,
𝑏 ≤ 𝑥 . Similarly, an upper bound 𝑦 of 𝐵 is called a join (or supremum, or least
upper bound) if for all upper bounds 𝑐 ∈ 𝐵, 𝑦 ≤ 𝑐.

We usually draw the meet and the join operations as rotated versions of the order
operation. For example, in the above definitions we have used ∧ and ∨ for the order ≤;
in subsequent sections we will use ⊓ and ⊔ for the order ⊑. In general, the join and
meet of a pair of elements in a poset need not exist. We are interested in the structures
in which they always exist, which are known as lattices.
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Definition 4.9 (Lattice). A lattice is a poset (𝐴, ≤) in which each pair of elements
𝑎, 𝑏 ∈ 𝐴 has a meet and join. A lattice is called a finite lattice if 𝐴 is finite, and
bounded if it has a least element and a greatest element.

Much like how every non-empty finite poset has at least one least and greatest
element, every non-empty finite lattice has a join and meet.

Notation 4.10. For a poset (𝐴, ≤), we write
∧
𝐴 for the meet of all the elements

in 𝐴 (if it exists) and
∨
𝐴 for the join of all the elements in 𝐴 (again, if it exists).

Lemma 4.11. A non-empty finite lattice (𝐴, ≤) is bounded.

Proof. As each pair of elements in 𝐴 has a meet, and as 𝐴 is finite, we can define
the least element ⊥ as

∧
𝐴. This element is the least element of 𝐴 by definition

of the meet: (𝑎0 ∧ 𝑎1) ≤ 𝑎0 and (𝑎0 ∧ 𝑎1) ≤ 𝑎1, ((𝑎0 ∧ 𝑎1) ∧ 𝑎2) ≤ (𝑎0 ∧ 𝑎1) and
((𝑎0∧𝑎1) ∧𝑎2) ≤ 𝑎2, and so on. The proof holds in reverse for the greatest element
⊤ by using the join

∨
𝐴.

Example 4.12. Let 𝐴 = {0, 1, 2}, and let (P𝐴, ⊆) be the poset defined as the
powerset of 𝐴 ordered by subset inclusion. This poset can be illustrated by the
following Hasse diagram, in which a line going up from 𝑎 to 𝑏 indicates that 𝑎 ≤ 𝑏.

{0, 1, 2}

{0, 1} {0, 2} {1, 2}

{0} {1} {2}

{}

The diagram clearly illustrates the lattice structure on this poset: the join is
union and the meet is intersection. Subsequently the greatest element ⊤ is the set
𝐴 and the least element ⊥ is the empty set {}.

Remark 4.13. If 𝐴 is a lattice, then for any 𝑛 ∈ N, 𝐴𝑛 is also a lattice by comparing
elements pointwise. The ⊥ is then the word containing 𝑛 copies of the ⊥ element
in 𝐴, and similarly for the ⊤ element.
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Recall the set 𝐴 := {0, 1, 2} from Example 4.12 and the lattice structure on
its powerset P𝐴. This induces an ordering on (P𝐴)2: {0, 1}{1} ≤ {0, 1, 2}{1, 2}
because {0, 1} ≤ {0, 1, 2} and {1} ≤ {1, 2}, and conversely {0, 1}{1} ≰ {0}{1, 2}
because {0, 1} ≰ {0}. The join and meet are computed by taking the join and
meet of each component: {0, 1}{1} ∨ {0, 1, 2}{1, 2} = {0, 1, 2}{1, 2} and {0, 1}{1} ∨
{0}{1, 2} = {0, 1}{1, 2}.

Values in a circuit signature are interpreted as elements of a finite lattice, so that
combining two signals into one wire can be modelled using the join. Now the primitives
in the signature must be interpreted. Clearly they should be interpreted as functions
between the values, but these functions must respect the order on the value lattice; one
should not be able to lose information by performing a computation.

Definition 4.14. Let (𝐴, ≤𝐴) and (𝐵, ≤𝐵) be partial orders. A function 𝑓 : 𝐴→ 𝐵

is monotone if, for every 𝑥,𝑦 ∈ 𝐴, 𝑥 ≤𝐴 𝑦 if and only if 𝑓 (𝑥) ≤𝐵 𝑓 (𝑦).

Another condition on the primitives is that when all the inputs to a primitive are ⊥,
then it should produce ⊥; we cannot produce information from nothing.

Definition 4.15. Let 𝐴, 𝐵 be finite lattices, where ⊥𝐴 is the least element of 𝐴 and
⊥𝐵 is the least element of 𝐵. A function 𝑓 : 𝐴→ 𝐵 is ⊥-preserving if 𝑓 (⊥𝐴) = ⊥𝐵.

Assigning interpretations to the combinational components of a circuit sets the
stage for the entire denotational semantics.

Definition 4.16 (Interpretation). For a signature Σ = (V, •,P, dom, cod), an inter-
pretation of Σ is a tuple (⊑, J−K) where (V, ⊑) is a lattice with • as the least element,
and J−K maps each 𝑝 ∈ P to a ⊥-preserving monotone function Vdom(𝑝) → Vcod(𝑝).

Example 4.17. Recall the Belnap signature ΣB = (VB,⊥,PB, domB, codB) from
Example 3.4. We assign a partial order ≤B to values in VB as follows:

⊤

f t

⊥

The gate interpretation J−KB has action AND ↦→ ∧,OR ↦→ ∨,NOT ↦→ ¬ where
∧, ∨ and ¬ are defined by the following truth tables [Bel77]:
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∧ ⊥ f t ⊤
⊥ ⊥ f ⊥ f
f f f f f
t ⊥ f t ⊤
⊤ f f ⊤ ⊤

∨ ⊥ f t ⊤
⊥ ⊥ ⊥ t t
f ⊥ f t ⊤
t t t t t
⊤ t ⊤ t ⊤

¬
⊥ ⊥
t f
f t
⊤ ⊤

The Belnap interpretation is then (≤B, J−KB). An online tool for experimenting
with the Belnap interpretation can be found at https://belnap.georgejkaye.com.

4.1.2 Denotational semantics of combinational circuits

The semantic domain for combinational circuits is straightforward: each circuit maps
to a monotone function.

Definition 4.18. Let FuncI be the PROP in which the morphisms 𝑚 → 𝑛 are the
⊥-preserving monotone functions V𝑚 → V𝑛.

To map between PROPs we must use a PROP morphism.

Definition 4.19. Let J−KCI : CCircΣ → FuncI be the PROP morphism with action
defined as

r zC

I
:= (𝑣) ↦→ (𝑣, 𝑣)

r zC

I
:= (𝑣,𝑤) ↦→ 𝑣 ⊔𝑤

r zC

I
:= (𝑣) ↦→ ()

r zC

I
:= () ↦→ ⊥

r
𝑚 𝑛𝑝

zC

I
:= J𝑝K

Remark 4.20. One might wonder why the fork and the join have different seman-
tics, as they would be physically realised by the same wiring. This is because digital
circuits have a notion of static causality : outputs can only connect to inputs. This
is why the semantics of combinational circuits is functions and not relations.

In real life one could force together two digital devices, but this might lead to
undefined behaviour in the digital realm. This is reflected in the semantics by the
use of the join; for example, in the Belnap interpretation if one tries to join together
t and f then the overspecified ⊤ value is produced.

4.1.3 Denotational semantics of sequential circuits

As one might expect, sequential circuits are slightly trickier to deal with. In a combi-
national circuit, the output only depends on the inputs at the current cycle, but for

https://belnap.georgejkaye.com
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sequential circuits inputs can affect outputs many cycles after they occur.
We therefore have to reason with infinite sequences of inputs rather than individual

values; these are known as streams.

Notation 4.21. Given a set 𝐴, we denote the set of streams (infinite sequences)
of 𝐴 by 𝐴𝜔 . As a stream can equivalently be viewed as a function N→ 𝐴, we write
𝜎 (𝑖) ∈ 𝐴 for the 𝑖-th element of stream 𝜎 ∈ 𝐴𝜔 . Individual streams are written as
𝜎 ∈ 𝐴𝜔 := 𝜎 (0) :: 𝜎 (1) :: 𝜎 (2) :: · · ·.

Streams can be viewed a bit like lists, in that they have a head component and an
(infinite) tail component.

Definition 4.22 (Operations on streams). Given a stream 𝜎 ∈ 𝐴𝜔 , its initial value
hd(𝜎) ∈ 𝐴 is defined as 𝜎 ↦→ 𝜎 (0) and its stream derivative tl(𝜎) ∈ 𝐴𝜔 is defined
as 𝜎 ↦→ (𝑖 ↦→ 𝜎 (𝑖 + 1)).

Notation 4.23. For a stream 𝜎 with initial value 𝑎 and stream derivative 𝜏 we
write it as 𝜎 := 𝑎 :: 𝜏 .

Streams will serve as the inputs and outputs to circuits, so the denotations of
sequential circuits will be stream functions, which consume and produce streams. Just
like with functions, we cannot claim that all streams are the denotations of sequential
circuits.

Definition 4.24 (Causal stream function [Rut06]). A stream function 𝑓 : 𝐴𝜔 → 𝐵𝜔

is causal if, for all 𝑖 ∈ N and 𝜎, 𝜏 ∈ 𝐴𝜔 we have that 𝜎 ( 𝑗) = 𝜏 ( 𝑗) for all 𝑗 ≤ 𝑖, then
𝑓 (𝜎) (𝑖) = 𝑓 (𝜏) (𝑖).

Causality is a form of continuity; a causal stream function is a stream function
in which the 𝑖-th element of its output stream only depends on elements 0 through 𝑖
inclusive of the input stream; it cannot look into the future. A neat consequence of
causality is that it enables us to lift the stream operations of initial value and stream
derivative to stream functions.

Definition 4.25 (Initial output [Rut06]). For a causal stream function 𝑓 : 𝐴𝜔 → 𝐵𝜔

and 𝑎 ∈ 𝐴, the initial output of 𝑓 on input 𝑎 is an element 𝑓 [𝑎] ∈ 𝐴 defined as
𝑓 [𝑎] := hd(𝑓 (𝑎 :: 𝜎)) for an arbitrary 𝜎 ∈ 𝐴𝜔 .

Since 𝑓 is causal, the stream 𝜎 in the definition of initial output truly is arbitrary;
the hd function only depends on the first element of the stream.
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Definition 4.26 (Functional stream derivative [Rut06]). For a stream function
𝑓 : 𝐴𝜔 → 𝐵𝜔 and 𝑎 ∈ 𝐴, the functional stream derivative of 𝑓 on input 𝑎 is a
stream function 𝑓𝑎 defined as 𝑓𝑎 := 𝜎 ↦→ tl(𝑓 (𝑎 :: 𝜎)).

The functional stream derivative 𝑓𝑎 is a new stream function which acts as 𝑓 would
‘had it seen 𝑎 first’.

Remark 4.27. One intuitive way to view stream functions is to think of them as
the states of some Mealy machine; the initial output is the output given some input,
and the functional stream derivative is the transition to a new state. As with most
things in mathematics, this is no coincidence; there is a homomorphism from any
Mealy machine to a stream function. We will exploit this fact in the next section.

This leads us to the next property of denotations of sequential circuits. Although
they may have infinitely many inputs and outputs, circuits themselves are built from a
finite number of components. This means they cannot specify infinite behaviour.

Notation 4.28. Given a finite word 𝑎 ∈ 𝐴★, we abuse notation and write 𝑓𝑎 for
the repeated application of the functional stream derivative for the elements of 𝑎,
i.e. 𝑓𝜀 := 𝑓 and 𝑓

𝑎::𝑏 := (𝑓𝑎)𝑏 .

Definition 4.29. Given a stream function 𝑓 : 𝐴𝜔 → 𝐵𝜔 , we say it is finitely specified
if the set {𝑓𝑎 | 𝑎 ∈ 𝐴★} is finite.

As the components of our circuits are monotone and ⊥-preserving, a denotational
semantics for circuits must also be monotone and ⊥-preserving. This means we need
to lift the order on values to an order on streams.

Notation 4.30. For a poset (𝐴, ≤𝐴) and streams 𝜎, 𝜏 ∈ 𝐴𝜔 , we say that 𝜎 ≤𝐴𝜔 𝜏

if 𝜎 (𝑖) ≤𝐴 𝜏 (𝑖) for all 𝑖 ∈ N.

For these properties to be suitable as a denotational semantics for sequential circuits,
we must show that stream functions with these properties form a category we can map
into from SCircΣ. We will first show that these categories form a symmetric monoidal
category, so we need a suitable candidate for composition and tensor. There are fairly
obvious choices here: for the former we use regular function composition and for the
latter we use the Cartesian product.

Lemma 4.31. Causality is preserved by composition and Cartesian product.
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Proof. If the 𝑖-th element of two stream functions 𝑓 and 𝑔 only depends on the
first 𝑖 + 1 elements of the input, then so will their composition and product.

Lemma 4.32. Finite specification is preserved by composition and Cartesian prod-
uct.

Proof. For both the composition and product of two stream functions 𝑓 and 𝑔, the
largest the set of stream derivatives could be is the product of stream derivatives
of 𝑓 and 𝑔, so this will also be finite.

Lemma 4.33. ⊥-preserving monotonicity is preserved by composition and Carte-
sian product.

Proof. The composition and product of any monotone function is monotone, and
must preserve the ⊥ element.

As the categorical operations preserve the desired properties, these stream functions
form a PROP.

Proposition 4.34. There is a PROP StreamI in which the morphisms 𝑚 → 𝑛 are
the causal, finitely specified and ⊥-preserving monotone stream functions (V𝑚)𝜔 →
(V𝑛)𝜔 .

Proof. Identity is the identity function, the symmetry swaps streams, composition
is composition of functions, and tensor product on morphisms 𝑓 : (V𝑚)𝜔 → (V𝑛)𝜔

and 𝑔 : (V𝑝)𝜔 → (V𝑞)𝜔 is the Cartesian product of functions composed with the
components of the isomorphism (V𝑚)𝜔 × (V𝑛)𝜔 � (V𝑚+𝑛)𝜔 .

As these constructs satisfy the categorical axioms, and as function composi-
tion and Cartesian product preserve causality (Lemma 4.31), finite specification
(Lemma 4.32), and monotonicity (Lemma 4.33), this data defines a symmetric
monoidal category.

Modelling sequential circuits as stream functions deals with temporal aspects, but
what about feedback? As the assignment of denotations needs to be compositional, we
need to map the trace on SCircΣ to a trace on StreamI . A usual candidate for the trace
when considering partially ordered settings is the least fixed point.
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Definition 4.35 (Least fixed point). For a poset (𝐴, ≤) and function 𝑓 : 𝐴→ 𝐴,
the least fixed point of 𝑓 is a value 𝜇𝑓 such that 𝑓 (𝜇𝑓 ) = 𝑓 and, for all values 𝑣
such that 𝑓 (𝑣) = 𝑣 , 𝜇𝑓 ≤ 𝑣 .

Least fixed points are ubiquitous in program semantics, where they are often used
to model recursion; since feedback is a form of recursion it seems apt that we should
also follow this route. As fixed points are so important, they are the subject of many
theorems; one that will come in very useful for us is the Kleene fixed-point theorem,
which is concerned with a special class of monotone functions.

Definition 4.36 (Directed subset). For a poset (𝐴, ≤), a non-empty subset 𝐵 ⊆ 𝐴
is called a directed subset if every pair of elements in 𝐵 has an upper bound in 𝐵.
If this set has a join

∨
𝐵 then this element is called a directed join.

Notation 4.37 (Image). For a function 𝑓 : 𝐴→ 𝐵 and subset 𝐶 ⊆ 𝐴, we write
𝑓 [𝐶] ⊆ 𝐵 for the image of 𝐶 under 𝑓 .

Definition 4.38 (Scott continuity). Given two posets (𝐴, ≤𝐴) and (𝐵, ≤𝐵), a func-
tion 𝑓 : 𝐴→ 𝐵 is Scott-continuous if for every directed subset 𝐶 ⊆ 𝐴 it holds that
𝑓 (∨𝐴𝐶) =

∨
𝐵 (𝑓 [𝐶]) i.e. 𝑓 preserves directed joins.

Theorem 4.39 (Kleene fixed-point theorem [Tar55]). Let (𝐴, ≤) be a poset in
which each of its directed subsets has a join, and let 𝑓 : 𝐿 → 𝐿 be a Scott-continuous
function. Then 𝑓 has a least fixed point, defined as ⊥ ∨ 𝑓 (⊥) ∨ 𝑓 (𝑓 (⊥)) ∨ · · ·.

Remark 4.40. The Kleene fixed-point theorem was not actually proved by Kleene,
but is only named after him! The result is often instead attributed to Tarski.

As we have so far only considered monotone functions, it is useful to get some
intuition for what Scott-continuity brings to the table.

Example 4.41. An example of a directed subset of V𝜔B is the set 𝑇 defined as
{t𝑛⊥ | 𝑛 ∈ N}; the join of this set is t𝜔 . One Scott-continuous function V𝜔B → V𝜔B is
defined as 𝑓 (𝜎) (0) = ⊥ and 𝑓 (𝜎) (𝑖 +1) = 𝑓 (𝜎) (𝑖); this is Scott-continuous because
finding the join of a set and then prepending it with ⊥ is the same as prepending
⊥ to each stream in the set and then finding their join.

An example of a stream function that is monotone but not Scott-continuous is
the function defined as 𝑔(t𝑛⊥𝜔 ) := f𝜔 (𝑛) and 𝑔(t𝜔 ) := ⊤𝜔 (the other inputs do not
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matter for this example). We can show this is not Scott-continuous by considering
the set 𝑇 above, as 𝑓 (⊔𝑇 ) = 𝑓 (t𝜔 ) = ⊤𝜔 ≠ f𝜔 =

⊔
𝑓 [𝑇 ]. However, note that this

function is not causal: as t𝜔 has the same prefix as every element in 𝑇 , 𝑓 (t𝜔 ) must
also share output prefixes.

So far we have not explicitly enforced Scott-continuity on stream functions; it turns
out that it is implied by causality and monotonicity.

Proposition 4.42. Let (𝐴, ≤𝐴) and (𝐵, ≤𝐵) be finite lattices, and let (𝐴𝜔 , ≤𝐴𝜔 )
and (𝐵𝜔 , ≤𝐵𝜔 ) be the induced lattices on streams. Then a causal and monotone
function 𝐴𝜔 → 𝐵𝜔 must also be Scott-continuous.

Proof. Consider a directed subset 𝐷 ⊆ 𝐴𝜔 ; we need to show that for an arbitrary
causal, monotone and finitely specified function 𝑓 we have that 𝑓 (∨𝐷) = ∨

𝑓 [𝐷].
First consider the case when there is a greatest element in 𝐷. In this case,∨
𝐷 must be the greatest element, and as such

∨
𝐷 ∈ 𝐷. As 𝑓 is monotone then

𝑓 (∨𝐷) must be the greatest element in 𝑓 [𝐷]; subsequently, 𝑓 (∨𝐷) = ∨
𝑓 [𝐷].

Now consider the case where there is no greatest element in 𝐷 and subsequently∨
𝐷 ∉ 𝐷; if there is no greatest element, 𝐷 must be infinite. Even though it is

infinite, 𝐷 is a directed subset so each pair of elements must have an upper bound,
and as ≤𝐴𝜔 is computed pointwise by using ≤𝐴 we can consider what the upper
bounds are pointwise too. Because 𝐴 is finite, there cannot be an infinite chain
of upper bounds for each element 𝑖; there must exist an element 𝑎𝑖 ∈ 𝐴 such
that 𝐷 contains infinitely many streams 𝜎 such that 𝜎 (𝑖) = 𝑎𝑖 . This means that
(∨𝐷) (𝑖) = 𝑎, so every prefix of

∨
𝐷 must exist as a prefix of a stream in 𝐷. As

𝑓 is causal, for each prefix 𝑓 (∨𝐷) there must also exist a 𝑑 ∈ 𝐷 such that 𝑓 (𝑑)
has that prefix, and as such

∨
𝑓 [𝐷] = 𝑓 (∨𝐷).

This means we can use the Kleene fixed point theorem as a tool to show that the
least fixed point is a trace on StreamI .

Notation 4.43 (Concatenation). For a set 𝐴, 𝑎 ∈ 𝐴𝑚, and 𝑏 ∈ 𝐴𝑛, we write 𝑎 ++𝑏
for the concatenation of 𝑎 and 𝑏: the tuple of length𝑚 +𝑛 containing the elements
of 𝑎 followed by the elements of 𝑏.

Notation 4.44 (Projection). For a set 𝐴, let 𝑎 ∈ 𝐴𝑚 and 𝑏 ∈ 𝐴𝑛. Then for
their concatenation 𝑐 := 𝑎 ++ 𝑏 ∈ 𝐴𝑚+𝑛, we write 𝜋0(𝑐) = 𝑎 and 𝜋1(𝑐) = 𝑏 for the
projections.
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Lemma 4.45. Given a morphism 𝑓 : (V𝑥+𝑚)𝜔 → (V𝑥+𝑛)𝜔 ∈ StreamI , and stream
𝜎 ∈ (V𝑚)𝜔 , the function 𝜏 ↦→ 𝜋0(𝑓 (𝜏, 𝜎)) has a least fixed point.

Proof. The function 𝜏 ↦→ 𝜋0(𝑓 (𝜏, 𝜎)) is causal and monotone because 𝑓 and the
projection function are causal and monotone, so it is Scott-continuous by Proposi-
tion 4.42. By the Kleene fixed point theorem, this function has a least fixed point,
defined as 𝜋0(𝑓 (⊥𝜔 , 𝜎)) ⊔ 𝜋0(𝑓 (𝜋0(𝑓 (⊥𝜔 , 𝜎)), 𝜎)) ⊔ · · ·.

We must show that this notion of least fixed point is a trace on StreamI . The first
step is to show that taking the least fixed point of a stream function in StreamI produces
another causal, finitely specified, ⊥-preserving, and monotone stream function. The
original proof idea for this is due to David Sprunger, and relies on an ordering on stream
functions themselves.

Definition 4.46. Let 𝐴 and 𝐵 be posets and let 𝑓 , 𝑔 : 𝐴𝜔 → 𝐵𝜔 be stream functions.
We say 𝑓 ⪯ 𝑔 if 𝑓 (𝜎) ≤𝐵𝜔 𝑔(𝜎) for all 𝜎 ∈ 𝐴𝜔 .

Theorem 4.47. For a function 𝑓 : (V𝑥+𝑚)𝜔 → (V𝑥+𝑛)𝜔 , let 𝜇𝑓 (𝜎) be the least
fixed point of the function 𝜏 ↦→ 𝜋0(𝑓 (𝜏, 𝜎)). Then, the stream function 𝜎 ↦→
𝜋1

(
𝑓 (𝜇𝑓 (𝜎), 𝜎)

)
is in StreamI .

Proof. To show this, we need to prove that 𝜎 ↦→ 𝜋1
(
𝑓 (𝜇𝑓 (𝜎)𝜎)

)
is in StreamI : it

is causal, finitely specified, and ⊥-preserving monotone.
Since 𝑓 : (V𝑥+𝑚)𝜔 → (V𝑥+𝑛)𝜔 is a morphism of StreamI , it has finitely

many stream derivatives. For each stream derivative 𝑓𝑤 , let the function
𝑓𝑤 : (V𝑥+𝑚)𝜔 → (V𝑥 )𝜔 be defined as 𝜏𝜎 ↦→ 𝜋0(𝑓𝑤 (𝜏𝜎)). Note that each of these
functions are causal, ⊥-preserving, and monotone, because they are constructed
from pieces that are causal ⊥-preserving and monotone.

In particular, 𝜇𝑓 (𝜎) is the least fixed point of �̂�𝜀 ((−)𝜎). Using the Kleene
fixed point theorem, the least fixed point of 𝑓 ((−)𝜎) can be obtained by com-
posing 𝑓 ((−)𝜎) repeatedly with itself. This means that 𝜇𝑓 (𝜎) =

⊔
𝑘∈N 𝑓 𝑘 (⊥𝜔 , 𝜎)

where 𝑓 𝑘 is the 𝑘-fold composition of 𝑓 (−, 𝜎) with itself, i.e. 𝑓 0(𝜏𝜎) = 𝜏 and
𝑓 𝑘+1(𝜏𝜎) = 𝑓

((
𝑓 𝑘 (𝜎, 𝜏)

)
𝜎

)
. That the mapping 𝜇𝑓 is causal and monotone is

straightforward: each of the functions in the join is causal and monotone, and join
preserves these properties. It remains to show that this mapping has finitely many
stream derivatives.

When equipped with ⪯, the set of functions (V𝑥+𝑚)𝜔 → (V𝑥 )𝜔 is a poset, of
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which {𝑓𝑤 |𝑤 ∈ (V𝑥+𝑚)★} is a finite subset. Restricting the ordering ⪯ to this set
yields a finite poset. Since this poset is finite, the set of strictly increasing sequences
in this poset is also finite. We will now demonstrate a relationship between these
sequences and stream derivatives of 𝜇𝑓 .

Suppose 𝑆 = 𝑓𝑤0 ≺ 𝑓𝑤1 ≺ · · · ≺ �𝑓𝑤ℓ−1 is a strictly increasing sequence of
length ℓ in the set of stream functions {𝑓𝑤 |𝑤 ∈ (V𝑥+𝑚)★}. We define a function
𝑔𝑆 : (V𝑚)𝜔 → (V𝑥 )𝜔 as (𝜎) ↦→ ⊔

𝑘∈N 𝑔𝑘 (𝜎) where

𝑔𝑘 (𝜎) =


⊥𝜔 if 𝑘 = 0

𝑓𝑤𝑘
((𝑔𝑘−1(𝜎), 𝜎)) if 1 ≤ 𝑘 ≤ ℓ�𝑓𝑤ℓ−1 ((𝑔𝑘−1(𝜎), 𝜎)) if ℓ < 𝑘

.

Let the set 𝐺 := {𝑔𝑆 | 𝑆 is a strictly increasing sequence}. When 𝑆 is set to the one-
item sequence 𝑓 , 𝑔𝑆 is 𝜇𝑓 , so 𝜇𝑓 ∈ 𝐺 . As 𝐺 is finite, this means that if 𝐺 is closed
under stream derivative, 𝜇𝑓 has finitely many stream derivatives. Any element of 𝐺
is either ⊥𝜔 or has the form 𝜎 ↦→ �̂�𝑤 (𝑔𝑘 (𝜎), 𝜎) for some 𝜎 ∈ (V𝑚)𝜔 and 𝑘 > 0. As
⊥𝜔 is its own stream derivative, we need to show that applying stream derivative
to the latter produces another element of 𝐺 .

𝜎 ↦→
(
�̂�𝑤 (𝑔𝑘−1(𝜎), 𝜎)

)
(𝑎,𝑏)

= 𝜎 ↦→ tl
(
�̂�𝑤 ((𝑎, 𝑏) :: (𝑔𝑘−1(𝜎), 𝜎))

)
= 𝜎 ↦→ tl (𝜋0(𝑓𝑤 ((𝑎, 𝑏) :: (𝑔𝑘−1(𝜎), 𝜎))))
= 𝜎 ↦→ 𝜋0(tl (𝑓𝑤 ((𝑎, 𝑏) :: (𝑔𝑘−1(𝜎), 𝜎))))

= 𝜎 ↦→ 𝜋0
(
(𝑓𝑤 (𝑔𝑘−1(𝜎), 𝜎)) (𝑎,𝑏)

)
= 𝜎 ↦→ 𝜋0

(
𝑓 (𝑎,𝑏)::𝑤 (𝑔𝑘−1(𝜎), 𝜎)

)
= 𝜎 ↦→ 𝑓 (𝑎,𝑏)::𝑤 (𝑔𝑘−1(𝜎), 𝜎)

As 𝜋0
(
𝑓(𝑎,𝑏)::𝑤

)
is in 𝐺 , the latter is closed under stream derivative. Subsequently,

𝜇𝑓 has finitely many stream derivatives.
This means that all the components of 𝜎 ↦→ 𝜋1(𝑓 (𝜇𝑓 (𝜎), 𝜎)) are causal, mono-

tone and finitely specified, and as these properties are preserved by composition,
the composite must also have them, so 𝜎 ↦→ 𝜋1(𝑓 (𝜇𝑓 (𝜎), 𝜎)) is in StreamI .

Even if StreamI is closed under least fixed point, this does not mean that it is a valid
trace. To verify this we must establish that the categorical axioms of the trace hold.
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Theorem 4.48. A trace on StreamI is given for a function 𝑓 : (V𝑥+𝑚)𝜔 → (V𝑥+𝑛)𝜔

by the stream function 𝜎 ↦→ 𝜋1(𝑓 (𝜇𝑓 (𝜎), 𝜎)), where 𝜇𝑓 (𝜎) is the least fixed point
of the function 𝜏 ↦→ 𝜋0(𝑓 (𝜏, 𝜎)) for fixed 𝜎.

Proof. By Theorem 4.47, StreamI is closed under taking the least fixed point, so
we just need to show that the axioms of STMCs hold. Most of these follow in a
straightforward way; the only interesting one is the sliding axiom. We need to show
that for stream functions 𝑓 : (V𝑥+𝑚)𝜔 → (V𝑦+𝑛)𝜔 and 𝑔 : (V𝑦)𝜔 → (V𝑥 )𝜔 , we have
that Tr𝑦 ((𝜏, 𝜎) ↦→ 𝑓 (𝑔(𝜏), 𝜎)) = Tr𝑥 ((𝜏, 𝜎) ↦→ 𝑔(𝜋0(𝑓 (𝜏, 𝜎)), 𝜋1(𝑓 (𝜏, 𝜎)))).

Let 𝑙 := (𝜏, 𝜎) ↦→ 𝑓 (𝑔(𝜏), 𝜎) and 𝑟 := (𝜏, 𝜎) ↦→ 𝑔(𝜋0(𝑓 (𝜏, 𝜎)), 𝜋1(𝑓 (𝜏, 𝜎))); we
must apply the candidate trace construction to both of these and check they are
equal. For 𝑙 , the least fixed point of 𝜏 ↦→ 𝜋0(𝑓 (𝑔(𝜏), 𝜎)) is

𝜇𝑙 (𝜎) = 𝜋0(𝑓 (𝑔(⊥𝜔 ), 𝜎)) ⊔ 𝜋0(𝑓 (𝑔(𝜋0(𝑓 (𝑔(⊥𝜔 ), 𝜎))), 𝜎)) ⊔ · · · .

Plugging this into the candidate trace construction we have that

𝜎 ↦→ 𝜋1
(
𝑓 (𝑔(𝜇𝑙

𝑙
(𝜎)), 𝜎)

)
= 𝜎 ↦→ 𝜋1(𝑓 (𝑔(𝜋0(𝑓 (𝑔(. . . 𝑓 (𝑔(𝜋0(𝑓 (𝑔(⊥𝜔 ), 𝜎))), 𝜎))))), 𝜎))

For the right-hand side, the least fixed point of 𝜏 ↦→ 𝑔(𝜋0(𝑓 (𝜏, 𝜎))) is

𝜇𝑟 (𝜎) = 𝑔(𝜋0(𝑓 (⊥𝜔 , 𝜎))) ⊔ 𝑔(𝜋0(𝑓 (𝑔(𝜋0(𝑓 (𝑔(⊥𝜔 ), 𝜎))), 𝜎))) ⊔ · · ·

When plugged into the candidate trace construction this produces

𝜎 ↦→ 𝜋1(𝑔(𝜋0(𝑓 (𝜇𝑟 (𝜎), 𝜎))), 𝜋1(𝑓 (𝜇𝑟 (𝜎), 𝜎)))
= 𝜎 ↦→ 𝜋1(𝑓 (𝜇𝑟𝜎 , 𝜎))
= 𝜎 ↦→ 𝜋1(𝑓 (𝑔(𝜋0(𝑓 (𝑔(. . . 𝑓 (𝑔(𝜋0(𝑓 (𝑔(⊥𝜔 ), 𝜎))), 𝜎))), 𝜎))))
= 𝜎 ↦→ 𝜋1(𝑓 (𝑔(𝜋0(𝑓 (𝑔(. . . 𝑓 (𝑔(𝜋0(𝑓 (⊥𝜔 , 𝜎))), 𝜎))), 𝜎))))

Both the left-hand and the right-hand sides of the sliding equation are equal, so
the construction is indeed a trace.

We now have two traced PROPs: a syntactic PROP of sequential circuit terms SCircΣ
and a semantic PROP of causal, finitely specified, monotone stream functions StreamI .
It would be straightforward to now define a map from circuits to these stream functions;
indeed, this is the strategy used in [GKS24]. Instead, we will first examine another
structure with close links to both circuits and stream functions; that of Mealy machines.
The structure of Mealy machines will come in useful when considering the completeness
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of the denotational semantics.

4.2 Monotone Mealy machines

It is not immediately obvious how to translate back from stream functions in StreamI

to circuits in SCircΣ. Even though these stream functions have finitely many stream
derivatives, how does one encapsulate this behaviour into a circuit? Fortunately, we
have a secret weapon: the Mealy machine [Mea55].

Mealy machines are used in circuit design to specify the behaviour of a circuit
without having to use concrete components. They also have a very useful coalgebraic
viewpoint which we will wield in order to build a bridge from circuits into stream
functions. In particular, there is a unique homomorphism from a Mealy machine to a
causal, finitely specified stream function. Our strategy is to assemble a special class of
Mealy machines which we dub monotone Mealy machines into another traced PROP.

Definition 4.49 (Mealy machine [Mea55]). Let 𝐴 and 𝐵 be finite sets. A (finite)
(𝐴, 𝐵)-Mealy machine is a tuple (𝑆, 𝑓 ) where 𝑆 is a finite set called the state space,
𝑓 : 𝑆 → (𝑆 × 𝐵)𝐴 is the Mealy function.

An (𝐴, 𝐵)-Mealy machine is parameterised over a set 𝐴 of inputs and a set 𝐵 of
outputs, and is comprised of a set 𝑆 of states and a function transforming a pair (𝑠, 𝑎) of
a current state and an input into a pair ⟨𝑡, 𝑏⟩ of a transition state and an output.

Notation 4.50. We will use the shorthand 𝑓0 := (𝑠, 𝑎) ↦→ 𝜋0(𝑓 (𝑠) (𝑎)) and 𝑓1 :=
(𝑠, 𝑎) ↦→ 𝜋1(𝑓 (𝑠) (𝑎)) for the transition and output component of the Mealy function
respectively.

Example 4.51. Let the set of Booleans be defined as B := {f, t}. We define a
(B,B)-Mealy machine (𝑆, 𝑓 ) as follows:

𝑆 := {𝑠0, 𝑠1} 𝑓 (𝑠0, f) ↦→ ⟨𝑠0, f⟩ 𝑓 (𝑠0, t) ↦→ ⟨𝑠1, t⟩
𝑓 (𝑠1, f) ↦→ ⟨𝑠1, t⟩ 𝑓 (𝑠1, t) ↦→ ⟨𝑠0, f⟩

This is a Mealy machine with two states; at state 𝑠0 the output is the input, and
at state 𝑠1 the output is the negation. If the input is true then the state switches.
To illustrate Mealy machines we draw states as circles; an arrow between states
labelled 𝑣 |𝑤 represents a transition on input 𝑣 producing output 𝑤 .



4.2. Monotone Mealy machines 70

𝑠0 𝑠1

t | t

f | f

t | f

f | t

4.2.1 The coalgebraic perspective

The definition of Mealy machine above is timeless and forms the basis for most of
modern electronics. The natural question for the categorist to ask is can we make it
more categorical? And as is often the case, we can, using the notion of a coalgebra.

Definition 4.52 (Coalgebra). For a category C, let 𝐹 : C → C be an endofunctor.
A coalgebra for 𝐹 , or 𝐹 -coalgebra, is an object 𝐴 ∈ C along with a morphism
𝛼 : 𝐴→ 𝐹𝐴 ∈ C, usually written (𝐴, 𝛼).

A Mealy machine is a pair of a set and a function, so this is a coalgebra in Set.

Definition 4.53. For sets 𝐴 and 𝐵, an (𝐴, 𝐵)-Mealy coalgebra is a coalgebra of
the functor 𝑌 : Set→ Set, defined as 𝑆 ↦→ (𝑆 × 𝐵)𝐴.

Example 4.54 ([BRS08]). Given sets 𝐴 and 𝐵, let Γ be the set of causal stream
functions 𝐴𝜔 → 𝐵𝜔 , and let 𝜈 : Γ → (Γ × 𝐵)𝐴 be the function defined as 𝑓 ↦→ 𝑎 ↦→
⟨𝑓𝑎, 𝑓 [𝑎]⟩. Then (Γ, 𝜈) is a (𝐴, 𝐵)-Mealy coalgebra.

The above example lays the groundwork to establish connections between circuits,
stream functions and Mealy machines. If we inspect it a little closer, we find that stream
functions are even more special than just being ‘an’ (𝐴, 𝐵)-Mealy coalgebra.

Definition 4.55 (Mealy homomorphism). For sets 𝐴 and 𝐵, a Mealy homomor-
phism between two (𝐴, 𝐵)-Mealy coalgebra (𝑆, 𝑓 ) and (𝑇,𝑔) is a function ℎ : 𝑆 → 𝑇

preserving transitions and outputs, i.e. if 𝑓 (𝑠, 𝑎) = (𝑟, 𝑏), then 𝑔(ℎ(𝑠), 𝑎) = (ℎ(𝑟 ), 𝑏).

The final (𝐴, 𝐵)-Mealy coalgebra is a (𝐴, 𝐵)-Mealy coalgebra to which every other
(𝐴, 𝐵)-Mealy coalgebra has a unique homomorphism.

Proposition 4.56 ([Rut06], Prop. 2.2). For every (𝐴, 𝐵)-Mealy coalgebra (𝑆, 𝑓 ),
there exists a unique (𝐴, 𝐵)-Mealy homomorphism ! : (𝑆, 𝑓 ) → (Γ, 𝜈).
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Proof. An (𝐴, 𝐵)-Mealy homomorphism 𝑔 : (𝑆, 𝑓 ) → (Γ, 𝜈) is a function 𝑆 → Γ, so
for a state 𝑠0 ∈ 𝑆, 𝑔(𝑠) will be a stream function 𝐴𝜔 → 𝐵𝜔 . Let 𝜎 ∈ 𝐴𝜔 be an
input stream; there is a (unique) series of transitions

𝑠0
𝜎 (0) | 𝑏0−−−−−−→ 𝑠1

𝜎 (1) | 𝑏1−−−−−−→ 𝑠2
𝜎 (2) | 𝑏2−−−−−−→ 𝑠3

𝜎 (3) | 𝑏3−−−−−−→ · · ·

Then !(𝑠) is defined for input 𝜎 and index 𝑖 ∈ N as !(𝑠) (𝜎) (𝑖) := 𝑏𝑖 .

For a Mealy coalgebra (𝑆, 𝑓 ) and a start state 𝑠0, !(𝑠0) (𝜎) maps to the stream of
outputs that (𝑆, 𝑓 ) would produce by applying 𝑓 to each element of 𝜎 , starting from 𝑠0.

4.2.2 Mealy machines on posets

To useMealy machines as a bridge between SCircΣ and StreamI they must be assembled
into another traced PROP. Not all Mealy machines defined so far correspond to circuits
in SCircΣ; we must refine our notion of Mealy machine in order to find those that do:
those that map to stream functions in StreamI .

Lemma 4.57. For a Mealy machine (𝑆, 𝑓 ) and state 𝑠0 ∈ 𝑆, !(𝑠0) is finitely specified.

Proof. 𝑆 is finite, and !(−) must preserve transitions.

We must also impose a monotonicity condition.

Definition 4.58 (Monotone Mealy machine). Let 𝐴, 𝐵 be posets; an (𝐴, 𝐵)-Mealy
machine (𝑆, 𝑓 ) is called a monotone Mealy machine if 𝑆 is also a poset and 𝑓 is
⊥-preserving monotone with respect to the ordering on 𝐴, 𝐵, and 𝑆.

To map to Mealy machines from circuits we need to assemble the former into
another PROP, in which the morphisms𝑚 → 𝑛 are (V𝑚,V𝑛)-Mealy machines; we must
also take into account the ‘initial state’ of circuits in SCircΣ.

Definition 4.59 (Initialised Mealy machine). An initialised Mealy machine is a
tuple (𝑆, 𝑓 , 𝑠0), where (𝑆, 𝑓 ) is a Mealy machine, and 𝑠0 ∈ 𝑆 is an initial state.

Example 4.60. We can initialise the (B,B)-Mealy machine ({𝑠0, 𝑠1}, 𝑓 ) from Ex-
ample 4.51 in two ways; here we will choose to initialise it as (𝑆, 𝑓 , 𝑠0). In the
diagrams, we label the initial state with an arrow.
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𝑠0 𝑠1

t | t

f | f

t | f

f | t

All that remains to define is the composition of Mealy machines, which is standard.

Definition 4.61 (Cascade product of Mealy machines [Gin14]). Given an initialised
(𝐴, 𝐵)-Mealy machine (𝑆, 𝑓 , 𝑠0) and an initialised (𝐵,𝐶)-Mealy machine (𝑇,𝑔, 𝑡0),
their cascade product is an initialised (𝐴,𝐶)-Mealy machine defined as

(𝑆 ×𝑇, ((𝑠, 𝑡), 𝑎) ↦→ ⟨(𝑓0(𝑠, 𝑎), 𝑔0(𝑡, 𝑓1(𝑠, 𝑎))) , 𝑔1(𝑡, 𝑓1(𝑠, 𝑎))⟩ , (𝑠0, 𝑡0)) .

The cascade product of two Mealy machines effectively executes the first on the
inputs, then executes the second on the outputs of the first.

Example 4.62. Recall the initialised (B,B)-Mealy machine (𝑆, 𝑓 , 𝑠0) from Exam-
ple 4.60; we will now compose this with ({𝑡0, 𝑡1}, 𝑔, 𝑡0) where 𝑔 is defined as follows:

𝑔(𝑡0, f) := ⟨𝑡0, f⟩ 𝑔(𝑡0, t) := ⟨𝑡1, t⟩ 𝑔(𝑡1, f) := ⟨𝑡1, t⟩ 𝑔(𝑡1, t) := ⟨𝑡1, t⟩

𝑡0 𝑡1
t | t

f | f f, t | t

The cascade product (𝑅,ℎ, 𝑟0) of these two machines defined as follows:

𝑅 := {(𝑠0, 𝑡0), (𝑠1, 𝑡0), (𝑠0, 𝑡1), (𝑠1, 𝑡1)} 𝑟0 := (𝑠0, 𝑡0)
ℎ((𝑠0, 𝑡0), f) := ⟨(𝑠0, 𝑡0), f⟩ ℎ((𝑠0, 𝑡0), t) := ⟨(𝑠0, 𝑡1), t⟩
ℎ((𝑠1, 𝑡0), f) := ⟨(𝑠1, 𝑡1), t⟩ ℎ((𝑠1, 𝑡0), t) := ⟨(𝑠0, 𝑡0), f⟩
ℎ((𝑠0, 𝑡1), f) := ⟨(𝑠0, 𝑡1), t⟩ ℎ((𝑠0, 𝑡1), t) := ⟨(𝑠1, 𝑡1), t⟩
ℎ((𝑠1, 𝑡1), f) := ⟨(𝑠1, 𝑡1), t⟩ ℎ((𝑠1, 𝑡1), t) := ⟨(𝑠0, 𝑡1), t⟩
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(𝑠0, 𝑡0) (𝑠1, 𝑡0)

(𝑠0, 𝑡1) (𝑠1, 𝑡1)

t | t

f | f
t | f

f | t

t | t

f | t

f | t

t | t

Tensor product is far more straightforward.

Definition 4.63 (Direct product of Mealy machines). Given an initialised (𝐴, 𝐵)-
Mealy machine (𝑆, 𝑓 , 𝑠0) and an initialised (𝐶, 𝐷)-Mealy machine (𝑇,𝑔, 𝑡0), their
direct product is an initialised (𝐴 ×𝐶, 𝐵 × 𝐷)-Mealy machine defined as

(𝑆 ×𝑇, ((𝑠, 𝑡), (𝑎, 𝑐)) ↦→ ⟨(𝑓0(𝑠, 𝑎), 𝑔0(𝑠, 𝑎)) , (𝑓1(𝑠, 𝑎), 𝑔1(𝑠, 𝑎))⟩ , (𝑠0, 𝑡0)) .

Example 4.64. The direct product of the two initialised (B,B)-Mealy machines
introduced in Example 4.60 and Example 4.62 is a (B2,B2)-Mealy machine (𝑄,𝑘, 𝑞0)
defined as follows:

𝑄 := {(𝑠0, 𝑡0), (𝑠1, 𝑡0), (𝑠0, 𝑡1), (𝑠1, 𝑡1)} 𝑞0 := (𝑠0, 𝑡0)
ℎ((𝑠0, 𝑡0),ff) := ⟨(𝑠0, 𝑡0),ff⟩ ℎ((𝑠0, 𝑡0), tf) := ⟨(𝑠1, 𝑡0), tf⟩
ℎ((𝑠0, 𝑡0),ft) := ⟨(𝑠0, 𝑡1),ft⟩ ℎ((𝑠0, 𝑡0),tt) := ⟨(𝑠1, 𝑡1),tt⟩
ℎ((𝑠1, 𝑡0),ff) := ⟨(𝑠1, 𝑡0), tf⟩ ℎ((𝑠1, 𝑡0), tf) := ⟨(𝑠0, 𝑡0),ff⟩
ℎ((𝑠1, 𝑡0),ft) := ⟨(𝑠1, 𝑡1),tt⟩ ℎ((𝑠1, 𝑡0),tt) := ⟨(𝑠0, 𝑡1),ft⟩
ℎ((𝑠0, 𝑡1),ff) := ⟨(𝑠0, 𝑡1),ft⟩ ℎ((𝑠0, 𝑡1), tf) := ⟨(𝑠1, 𝑡1),tt⟩
ℎ((𝑠1, 𝑡1),ft) := ⟨(𝑠0, 𝑡1),ft⟩ ℎ((𝑠0, 𝑡1),tt) := ⟨(𝑠1, 𝑡1),tt⟩
ℎ((𝑠1, 𝑡1),ff) := ⟨(𝑠1, 𝑡1),tt⟩ ℎ((𝑠1, 𝑡1), tf) := ⟨(𝑠0, 𝑡1),ft⟩
ℎ((𝑠1, 𝑡1),ft) := ⟨(𝑠1, 𝑡1),tt⟩ ℎ((𝑠1, 𝑡1),tt) := ⟨(𝑠0, 𝑡1),ft⟩
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(𝑠0, 𝑡0) (𝑠1, 𝑡0)

(𝑠0, 𝑡1) (𝑠1, 𝑡1)

ff | ff

ft | ft

tf | tf

tt | tt

ff | tf
tf | ff

ft | tt

tt | ft

ff,ft | ft
tf,tt | tt

ff,ft | tt

tf,tt | ft

With cascade product as composition and direct product as tensor, initialised mono-
tone Mealy machines form a PROP.

Definition 4.65. Let MealyI be the PROP in which the morphisms𝑚 → 𝑛 are the
initialised monotone (V𝑚,V𝑛)-Mealy machines. Composition is by cascade product
and tensor on morphisms is by direct product. The identity and the symmetry are
the single-state machines that output the input and swap the inputs respectively.

Once again, we must show that this category has a trace. This can be computed in
much the same way as it was for stream functions.

Definition 4.66. Let (𝑆, 𝑓 ) be a monotone (V𝑥+𝑚,V𝑥+𝑛)-Mealy machine. For
a state 𝑠 ∈ 𝑆 and input 𝑎 ∈ V𝑚, let 𝜇𝑠 (𝑎) be the least fixed point of 𝑟 ↦→
𝜋0(𝑓 (𝑠, 𝑟 ++ 𝑎)). The least fixed point of an initialised Mealy machine (𝑆, 𝑓 , 𝑠0)
is a (V𝑚,V𝑛)-Mealy machine (𝑆, (𝑠, 𝑎) ↦→ 𝑓 (𝜇𝑠𝑎 ++ 𝑎) , 𝑠0)

Example 4.67. Consider the monotone (V3,V3)-Mealy machine with state set VB,
initial state ⊥, and Mealy function

𝑔 := (𝑠, (𝑥,𝑦, 𝑧)) ↦→ ⟨¬𝑦 ∧ ¬𝑥, (¬𝑠 ∧ ¬𝑧, 𝑠,¬𝑠 ∧ ¬𝑧)⟩).

To take the trace of this machine, we must first compute the least fixed point of
𝑣 ↦→ ¬𝑠 ∧ ¬𝑧, which is clearly just ¬𝑠 ∧ ¬𝑧. Therefore the Mealy function of the
traced (V2,V2) machine is (𝑠, (𝑦, 𝑧)) ↦→ 𝑔(𝑠, (¬𝑠 ∧ ¬𝑧,𝑦,¬𝑠 ∧ ¬𝑧)).

We must show that this is the trace onMealyI .
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Proposition 4.68. The least fixed point is a trace on MealyI .

Proof. Let (𝑆, 𝑓 ) be a monotone (V𝑥+𝑚,V𝑥+𝑛)-Mealy machine; this means that 𝑆
must be a poset. The Mealy function 𝑓 : 𝑆 × V𝑥+𝑚 → 𝑆 × V𝑥+𝑛 is monotone with
regards to the orders on 𝑆 and V𝑥+𝑚 and 𝑆 × (𝑥 + 𝑛) is finite, so 𝑓 has a least
fixed point. The function 𝑓 ′ := (𝑠, 𝑎) ↦→ 𝜋1(𝑓 (𝜇𝑠 (𝑎) ++ 𝑎)) is a composition of
⊥-preserving monotone functions, so it is itself ⊥-preserving monotone; this makes
(𝑆, 𝑓 ′) a monotone (V𝑚,V𝑛)-Mealy machine. This construction is a trace for the
same reason as the trace of StreamI is.

With monotone Mealy machines in a PROP, we can now represent the unique
homomorphism from a Mealy machine to a set of state functions as a PROP morphism.

Proposition 4.69. There is a traced PROP morphism !I (−) : MealyI → StreamI

sending a monotone Mealy machine (𝑆, 𝑓 , 𝑠0) : 𝑚 → 𝑛 to !(𝑠0), where ! is the unique
homomorphism (𝑆, 𝑓 ) → (Γ, 𝜈).

Proof. Since every stream function also has a Mealy coalgebra structure and Mealy
homomorphisms preserve transitions and outputs, composition of Mealy machines
also coincides with composition of stream functions.

4.2.3 Streams to Mealy machines

So far we have seen how a causal, finitely specified, and ⊥-preserving monotone stream
function can be retrieved from a monotone Mealy machine. It is also possible to retrieve
a Mealy machine for a given stream function in StreamI by repeatedly taking stream
derivatives; since we know there are finitely many we will be able to compute a finite
set of states in a Mealy machine.

Example 4.70. Let 𝑓 : VB → VB be a stream function defined as 𝑓 (𝜎) (0) = 𝜎 (0)
and 𝑓 (𝜎) (𝑘 + 1) = 𝑓 (𝜎) (𝑘) ∧ 𝜎 (𝑘 + 1). We will derive a Mealy machine in MealyI
from this stream function. The complete set of states is {𝑓 , 𝑓⊥, 𝑓f, 𝑓⊤}:

• 𝑓t = 𝑓 ;
• (𝑓⊥)⊥ = (𝑓⊥)t = 𝑓⊥;
• (𝑓⊤)⊤ = (𝑓⊤)t = 𝑓⊤; and
• (𝑓⊥)f = (𝑓⊥)⊤ = (𝑓⊤)⊥ = (𝑓⊤)f = 𝑓f.

The Mealy function is defined for each state as the initial value and stream derivative
of the original stream function. The initial state of the Mealy machine is 𝑓 .



4.2. Monotone Mealy machines 76

In fact, for a function 𝑓 this procedure produces a minimal Mealy machine.

Corollary 4.71 (Corollary 2.3, [Rut06]). For a causal, finitely specified, stream
function 𝑓 : 𝑀𝜔 → 𝑁𝜔 , let 𝑆 be the least set of causal stream functions including
𝑓 and closed under stream derivatives: i.e. for all ℎ ∈ 𝑆 and 𝑎 ∈ 𝑀, ℎ𝑎 ∈ 𝑆. Then
the initialised Mealy machine ⟨⟨𝑓 ⟩⟩I = (𝑆, 𝑔, 𝑓 ), where 𝑔(ℎ) (𝑎) = ⟨ℎ[𝑎], ℎ𝑎⟩, has the
smallest state space of Mealy machines with the property !I ⟨⟨𝑓 ⟩⟩I = 𝑓 .

Proof. Since 𝑆 is generated from the function 𝑓 and is the smallest possible set,
there are no unreachable states in 𝑆. Since the output and transition of states in
⟨⟨𝑓 ⟩⟩I are the initial output and stream derivative, two states can only have the
same ‘behaviour’ if they are derived from the same original stream function.

We will encode this data into a PROP morphism from StreamI to MealyI ; in order
to do this we must verify that the produced Mealy machine is monotone.

Lemma 4.72. The functions 𝜎 ↦→ hd(𝜎) and 𝜎 ↦→ tl(𝜎) are monotone.

Proof. Let 𝜎 := 𝑎 :: 𝜎′ and 𝜏 := 𝑏 :: 𝜏′ be streams in 𝐴𝜔 such that 𝜎 ≤𝐴𝜔 𝜏 ;
subsequently 𝑎 ≤ 𝑏 and 𝜎′ ≤𝐴𝜔 𝜏′. So hd(𝜎) := hd(𝑎 :: 𝜎′) = 𝑎 ≤𝐴 𝑏 = hd(𝑏 :: 𝜏′) :=
hd(𝜏) and tl(𝜎) := tl(𝑎 :: 𝜎′) = 𝜎′ ≤𝐴𝜔 𝜏′ = tl(𝑏 :: 𝜏′) = tl(𝜏).

Lemma 4.73. For posets 𝐴 and 𝐵 and a monotone causal stream function
𝑓 : 𝐴𝜔 → 𝐵𝜔 , the functions 𝑎 ↦→ 𝑓 [𝑎] and 𝑎 ↦→ 𝑓𝑎 are monotone.

Proof. Let 𝑎, 𝑏 ∈ 𝐴 such that 𝑎 ≤𝐴 𝑏; then by monotonicity 𝑓 (𝑎 :: 𝜎) ≤𝐵𝜔 𝑓 (𝑏 :: 𝜎)
for all 𝜎 ∈ 𝐴𝜔 . By Lemma 4.72, hd ◦ 𝑓 and tl ◦ 𝑓 are monotone. First we show
that the initial output is monotone: 𝑓 [𝑎] := hd(𝑓 (𝑎 :: 𝜎)) ≤𝐴 hd(𝑓 (𝑏 :: 𝜎)) = 𝑓 [𝑏].
For the stream derivative, 𝑓𝑎 (𝜎) := tl(𝑓 (𝑎 :: 𝜎)) ≤𝐵𝜔 tl(𝑓 (𝑏 :: 𝜎)) := 𝑓𝑎 (𝜎).

Lemma 4.74. Given 𝑓 ∈ StreamI , ⟨⟨𝑓 ⟩⟩I is a monotone Mealy machine.

Proof. Each state in the derived Mealy machine is a monotone stream function, so
this is a poset ordered by ⪯ as defined in Definition 4.46. and The Mealy function
is the pairing of the initial output and stream derivative; by Lemma 4.73 these are
monotone so the Mealy function must also be monotone.



77 Chapter 4. Denotational semantics

Corollary 4.75. The procedure ⟨⟨−⟩⟩I is a PROP morphism StreamI → MealyI .

This means we can map between monotone Mealy machines and causal, finitely
specified, monotone stream functions in either direction. Mealy machines are perhaps
more intuitive to work with, but stream functions are the ‘purest’ specification of the
behaviour in that they have the smallest possible state set. Ideally we would be able to
work in whichever setting is most beneficial at a given time, so we need to show that
the translations are behaviour-preserving.

Proposition 4.76. !I (−) ◦ ⟨⟨−⟩⟩I = idStreamI .

Proof. Stream functions are equal if they have the same initial output and stream
derivative. ⟨⟨−⟩⟩I preserves outputs and derivatives by definition, and !I (−) pre-
serves transitions and outputs because it is a Mealy homomorphism.

The reverse does not hold as many Mealy machines may map to the same stream
function, but the result of !I (−) ◦ ⟨⟨−⟩⟩I ◦ !I (−) is of course equal to !I (−).

4.3 Between circuits and Mealy machines

The close links between StreamI and MealyI are nice to have but hardly ground-
breaking; the main contribution of this chapter is to introduce SCircΣ to the mix by
defining maps SCircΣ → MealyI andMealyI → SCircΣ. This allows us to use mono-
tone Mealy machines as a stepping stone in the correspondence between sequential
circuits and stream functions. By exploiting the coalgebraic properties shared between
Mealy machines and stream functions, this can be used to show that StreamI is both
a sound and complete denotational semantics: there is a stream function in StreamI

for every circuit in SCircΣ, and there is a circuit in SCircΣ for every stream function in
StreamI .

4.3.1 Circuits to monotone Mealy machines

Circuits have a very natural interpretation as Mealy machines, so the action of a PROP
morphism from SCircΣ toMealyI is fairly intuitive.

Definition 4.77. Let [−]I : SCircΣ → MealyI be the traced PROP morphism de-
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𝑠𝑣 𝑠⊥
( ) | 𝑣

( ) | ⊥

𝑠⊥

𝑠f𝑠t 𝑠⊤

t | ⊥

f | ⊥

⊤ | ⊥

⊥ | ⊥

t | t

f | t

⊥ | t

⊤ | t f | f

⊤ | f

t | f

⊥ | f

⊤ | ⊤

f | ⊥

f | ⊤

⊥ | ⊤

Figure 4.1: Mealy machines for Belnap values and delays

fined on generators as[
𝑔

]
I
:= ({𝑠}, (𝑠, 𝑣) ↦→ ⟨𝑠, J𝑔K (𝑣)⟩ , 𝑠)[ ]

I
:= ({𝑠}, (𝑠, 𝑣) ↦→ ⟨𝑠, (𝑣, 𝑣)⟩ , 𝑠)[ ]

I
:= ({𝑠}, (𝑠, (𝑣,𝑤)) ↦→ ⟨𝑠, (𝑣 ⊔𝑤)⟩ , 𝑠)[ ]

I
:= ({𝑠}, (𝑠, 𝑣) ↦→ ⟨𝑠, ()⟩ , 𝑠)[

𝑣
]
I := ({𝑠𝑣 , 𝑠⊥}, {𝑠𝑣 ↦→ ⟨𝑠⊥, 𝑣⟩ , 𝑠⊥ ↦→ ⟨𝑠⊥,⊥⟩}, 𝑠𝑣 )[ ]
I
:= ({𝑠𝑣 | 𝑣 ∈ V}, (𝑠𝑣 , 𝑎) ↦→ ⟨𝑣, 𝑠𝑎⟩ , 𝑠⊥)

Example 4.78. The action of [−]IB on values and delays in SCircΣB is illustrated
in Figure 4.1.

Example 4.79. Applying [−]IB to the SR NOR latch from Example 3.18 produces
the monotone Mealy machine in Example 4.67, which is illustrated in Figure 4.2.
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⊥

t ⊤

f

⊥t,⊥⊤ | ⊥f

⊥⊥,⊥t, f⊥,ff | ⊥⊥

ft, f⊤ | ⊥f

⊤t,⊤⊤ | ff

tt, t⊤ | ⊥f

t⊥,ff,⊤⊥,⊤f | ⊥⊥

f𝑣 | tf

⊥𝑣 | tf

t𝑣 | tf

⊤𝑣 | tf

⊤⊥,⊤t | ⊤f

ff, f⊤,⊤f,⊤⊤ | ⊤⊤

f⊤,tt | ⊤t

⊥⊥,⊥t | ⊤f

⊥f,⊥⊤, tf, f⊤ | ⊤⊤

t⊥,tt | ⊤f

ff | tt
⊥f,ff, tf,⊤t | ft

⊥⊤, f⊤, t⊤,⊤⊤ | f⊤

ft | ff

⊥⊥, f⊥ | f⊥

⊥⊤ | ff

⊤t | ff
⊤⊤ | f⊤

Figure 4.2: Mealy machine for the SR NOR latch

Mealy machines are a reasonable semantics for sequential circuits, but the image
of [−]I does not always lead to minimal Mealy machines, and there are many Mealy
machines that may correspond to the same behaviour. The ‘purest’ semantics of a
sequential circuit is a stream function in StreamI .

Definition 4.80. Let J−KSI : SCircΣ → StreamI be defined as !I (−) ◦ [−]I .

We have now finally established the denotation of a sequential circuit 𝑓𝑚 𝑛 :

it is the stream function
r

𝑓

zS

I
: (V𝑚)𝜔 → (V𝑛)𝜔 . The existence of the PROP

morphism J−KSI confirms that causal, finitely specified and ⊥-preserving monotone
stream functions are a sound denotational semantics for sequential circuits, as every
circuit in SCircΣ has a corresponding stream function in StreamI .

It is useful to verify that this denotational semantics of sequential circuits agrees with
the denotational semantics we defined earlier for combinational circuits in Section 4.1.1.

Lemma 4.81. Let 𝑓𝑚 𝑛 be a combinational circuit; for 𝜎 ∈ (V𝑚)𝜔 and 𝑖 ∈ N,
r

𝑓

zS

I
(𝜎) (𝑖) =

r
𝑓

zC

I
(𝜎 (𝑖)).
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Proof. Since 𝑓𝑚 𝑛 is combinational,
[

𝑓𝑚 𝑛

]
I

is a Mealy machine
with a single state 𝑠, i.e. there is a function 𝑔 : V𝑚 → V𝑛 such that[

𝑓𝑚 𝑛

]
I
= ({𝑠}, (𝑠, 𝑣) ↦→ ⟨𝑠, 𝑔(𝑣)⟩ , 𝑠). By definition of !I (−), we have that������ [ 𝑓𝑚 𝑛

]
I

������≤
I
(𝜎) (𝑖) = 𝑔(𝜎 (𝑖)). To complete the proof, we need to show that

𝑔(𝜎) (𝑖) =
r

𝑓

zC

I
(𝜎 (𝑖)); this holds because [−]I and J−KCI freely build func-

tions using the same constructs.

Using this idea, it will be convenient to have a mapping from functions to these
constant stream functions.

Definition 4.82. Let ⌜−⌝I : FuncI → StreamI be defined as the PROP morphism
with action ⌜𝑓 ⌝I := 𝜎 ↦→ 𝑖 ↦→ 𝑓 (𝜎) (𝑖)

4.3.2 Monotone Mealy machines to circuits

We now need a way to retrieve a circuit morphism in SCircΣ from a stream function
𝑓 ∈ StreamI . To prevent us from picking an arbitrary circuit, the denotation of the
circuit must also be 𝑓 .

We already know by Corollary 4.71 that given a stream function 𝑓 we can retrieve
a monotone Mealy machine ⟨⟨𝑓 ⟩⟩I . All that remains is to translate this into a circuit
morphism. For regular Mealy machines, there is a standard procedure in circuit de-
sign [KJ09] in which each state of a Mealy machine is encoded as a power of values,
and the Mealy function is interpreted as a circuit using combinational logic.

Example 4.83. Consider the following Mealy machine operating on Boolean values.

𝑠0 𝑠1

f | t

t | f

t | t

f | f

To convert this machine to a circuit, we assign each state a boolean value: in this
case 𝑠0 ↦→ f, 𝑠1 ↦→ t. We can now construct a truth table to show how a state and
an input map to a transition and an output:

f f t t
f t f f
t f t f
t t f t
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It is possible to describe these truth tables as logical expressions: in this case
the expression for the next state is (𝑣0, 𝑣1) ↦→ (¬𝑣0 ∧ ¬𝑣1) ∨ (𝑣0 ∧ ¬𝑣1) and the
expression for the output is (𝑣0, 𝑣1) ↦→ (¬𝑣0∧¬𝑣1)∨ (𝑣0∧𝑣1). These expressions can
clearly be constructed as combinational circuits using AND, OR and NOT gates;
the entire circuit corresponding to the Mealy machine is constructed by combining
the combinational logic with registers to hold the state.

comb
logic

state

We will use a variation of this procedure to map from MealyI to SCircΣ. However,
when considering monotone Mealy machines, this procedure must additionally respect
monotonicity as the combinational logic is constructed using monotone components.
This means that an arbitrary encoding cannot be used; we will now show how to select
something suitable.

Definition 4.84 (Encoding). Let 𝑆 be a set equipped with a partial order ⪯ and a
total order ≤ such that 𝑆 can be represented as 𝑠0 ≤ 𝑠1 ≤ . . . 𝑠𝑘−1. The ≤-encoding
for this assignment is a function 𝛾≤ : 𝑆 → V𝑘 defined as 𝛾≤ (𝑠) (𝑖) := ⊤ if 𝑠𝑖 ⪯ 𝑠 and
𝛾≤ (𝑠) (𝑖) := ⊥ otherwise.

Example 4.85. Recall the monotone Mealy machine from Example 4.79, which
has state set VB := {⊥, f, t,⊤}. We choose the total order on VB as ⊥ ≤ f ≤
t ≤ ⊤; subsequently, the ≤-encoding is defined as ⊥ ↦→ ⊤⊥⊥⊥, f ↦→ ⊤⊤⊥⊥, t ↦→
⊤⊥⊤⊥,⊤ ↦→ ⊤⊤⊤⊤.

It is essential that a ≤-encoding respects the original ordering of the states.

Lemma 4.86. For an ordered state space (𝑆, ⪯) and a ≤-encoding 𝛾≤, 𝑠 ⪯ 𝑠′ if
and only if 𝛾≤ (𝑠) ⊑ 𝛾≤ (𝑠′).

Proof. First the (⇒) direction. Let 𝑠𝑖, 𝑠 𝑗 ∈ 𝑆 such that 𝑠𝑖 ⪯ 𝑠 𝑗 ; we need to show
that for every 𝑙 < |𝑆 |, 𝛾≤ (𝑠𝑖) (𝑙) ⊑ 𝛾≤ (𝑠 𝑗 ) (𝑙). The only way this can be violated is if
𝑠𝑖 (𝑙) = ⊤ and 𝑠 𝑗 (𝑙) = ⊥; this can only occur if 𝑠𝑙 ⪯ 𝑠𝑖 and 𝑠𝑙 ̸⪯ 𝑠 𝑗 . But since 𝑠𝑖 ⪯ 𝑠 𝑗 ,
this is a contradiction due to transitivity so 𝛾≤ (𝑠𝑙 ) ⊑ 𝛾≤ (𝑠 𝑗 ) also holds.

Now the (⇐) direction. Assume that 𝛾≤ (𝑠𝑖) ⊑ 𝛾≤ (𝑠 𝑗 ); we need to show that 𝑠𝑖 ⪯
𝑠 𝑗 ; i.e. that 𝛾≤ (𝑠 𝑗 ) (𝑖) = ⊤ If 𝛾≤ (𝑠𝑖) ⊑ 𝛾≤ (𝑠 𝑗 ), then for each 𝑙 < 𝑘 then 𝛾≤ (𝑠𝑖) (𝑙) ⊑
𝛾≤ (𝑠 𝑗 ) (𝑙); in particular 𝛾≤ (𝑠𝑖) (𝑖) ⊑ 𝛾≤ (𝑠 𝑗 ) (𝑖) By definition of 𝛾≤, 𝛾≤ (𝑠𝑖) (𝑖) = ⊤, so
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if 𝛾≤ (𝑠𝑖) ⊑ 𝛾≤ (𝑠 𝑗 ) then 𝛾≤ (𝑠 𝑗 ) (𝑖) is also ⊤.

Using this encoding, we will construct a circuit morphism that, when interpreted
as a function, implements the output and transition function of the Mealy machine.
There is no reason for such a morphism to exist for an arbitrary interpretation: why
should we expect some collection of gates to be able to model every function? The
useful interpretations are those that can model every function.

Definition 4.87 (Functional completeness). A complete interpretation is a tuple
(I, | |−| |) in which I is an interpretation of a signature Σ and | |−| | : FuncI → SCircΣ

is a map that sends functions 𝑓 : V𝑚 → V𝑛, to circuits of the form
𝑓

𝑣

for some word 𝑣 ∈ V★ such that J| |𝑓 | |KSI (𝜎) (𝑖) = 𝑓 (𝜎 (𝑖)).

For a given complete interpretation (I, | |−| |), we refer to a circuit | |𝑓 | | as the
normalised circuit for 𝑓 .

Remark 4.88. Even though | |−| | maps combinational functions, its codomain is
the category of sequential circuits SCircΣ. This is because instantaneous values
may be required to create the normalised circuit. Despite the use of sequential
components, the loop enforces that the state is constant: it will always produce
the word 𝑣 , so the the circuit still has combinational behaviour.

Sometimes this is the only way to ensure every function can be modelled. For
example, consider the Boolean function B→ B that always produces f. Using the
strategy from Example 4.83, no lines of the truth table are true, so the expression
can only be defined using the unit of the disjunction, the constant false.

Note also that this sequential component is by no means mandatory: the func-
tional completeness map may actually map only to combinational circuits, in which
case the width of the sequential component would be 0.

Example 4.89. The Belnap interpretation from Example 4.17 is functionally com-
plete; for interests of space we postpone the proof to Section 4.5. This is due to a
variation of the standard functional completeness method for Boolean values.

With the knowledge that any monotone function has a corresponding circuit in
SCircΣ, we set about encoding an arbitrary Mealy function 𝑆 × V𝑚 → 𝑆 × V𝑛 into a
function V𝑘 × V𝑛 → V𝑘 × V𝑛 . One point to note here is that there may be more values
in V𝑘 than there are states in 𝑆 , so we may need to ‘fill in the gaps’ in a way that is
compatible with monotonicity.



83 Chapter 4. Denotational semantics

Definition 4.90 (Monotone completion). Let 𝐴 be a finite poset and let 𝐵 be a
finite lattice such that 𝐴 ⊆ 𝐵. Then for another finite lattice 𝐶 and a monotone
function 𝑓 : 𝐴→ 𝐶, let the monotone 𝐵-completion of 𝑓 be the function 𝑓m : 𝐵 → 𝐶

recursively defined as

𝑓m(𝑣) =


𝑓 (𝑣) if 𝑣 ∈ 𝐴
⊥𝐶 if 𝑣 = ⊥𝐵,⊥ ∉ 𝐴∨{𝑓m(𝑤) |𝑤 ≤𝐵 𝑣,𝑤 ≠ 𝑣} otherwise

Example 4.91. For 𝑛 ∈ N, let N𝑛 be the subset of the natural numbers containing
the numbers 0, 1, . . . , 𝑛 − 1 with the usual order. Let 𝑓 : {2, 4} → N be defined as
2 ↦→ 6 and 4 ↦→ 7. The monotone N5-completion of 𝑓 is a function 𝑓m : N5 → N,
defined as follows: 𝑓m(0) = 0 as 0 is the least element of N5; 𝑓m(1) = 0 as
0 ≤ 1 and 𝑔m(1) = 0; 𝑓m(2) = 6 as 2 ∈ {2, 4} and 𝑔(2) = 6; 𝑓m(3) = 6 because
𝑓m(3) = 𝑓m(0) ∨ 𝑓m(1) ∨ 𝑓m(2) = 0 ∨ 0 ∨ 6 = 6; and 𝑓m(4) = 7 because 𝑓 (4) = 7.

A Mealy function can now be encoded over powers of V by using the monotone
completion of some encoding function.

Definition 4.92 (Monotone Mealy encoding). For a monotone Mealy machine
(𝑆, 𝑓 , 𝑠0) with 𝑘 states and an encoding 𝛾≤ : 𝑆 → V𝑘 , let 𝛾𝑝≤ : 𝛾≤ [𝑆] × V𝑚 → V𝑘 × V𝑛

be defined as the function (𝛾≤ (𝑠), 𝑥) ↦→ (𝛾≤ (𝑓0(𝑠, 𝑥)), 𝑓1(𝑠, 𝑥)). The monotone
Mealy encoding of (𝑆, 𝑓 , 𝑠0) is a function 𝛾≤ (𝑓 ) : V𝑘 × V𝑚 → V𝑘 × V𝑛 defined as
the (V𝑘 × V𝑚)-completion of 𝛾𝑝≤.

To obtain the syntactic circuit for a monotone Mealy function encoded in this way,
it needs to be a morphism in FuncI . It is monotone by definition, but we need to make
sure it is also ⊥-preserving.

Lemma 4.93. A monotone Mealy encoding is in FuncI .

Proof. A Mealy encoding is monotone as it is a monotone completion. There
cannot be a state ⊥𝑘 since at least one bit must be ⊤; this means the monotone
completion will send the input (⊥𝑘 ,⊥𝑚) to (⊥𝑘 ,⊥𝑛): it is ⊥-preserving.

The foundations are now set for establishing the image of a PROP morphism from
Mealy machines to circuit terms. There is one more thing to consider: Definition 4.84
depends on some arbitrary total ordering on the states in a given monotone Mealy
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machine. While this may not seem much of an issue, when defining a PROP morphism
this must be fixed, otherwise the mapping of Mealy machines to circuits might be
nondeterministic.

Definition 4.94 (Chosen state order). Let (𝑆, 𝑓 , 𝑠0) be a monotone Mealy machine
with input space V𝑚, and let ≤ be a total order on V; ≤ can be extended to a total
order ≤★ on (V𝑚)★ using the lexicographic order. Let 𝑆′ be the set of accessible
states of 𝑆. For each state 𝑠 ∈ 𝑆′, let 𝑡𝑠,≤ ∈ (V𝑚)★ be the minimal element of the
subset of words that transition from 𝑠0 to 𝑠, ordered by ≤. Then the chosen state
order ≤𝑆 ′ is a total order on 𝑆′ defined as 𝑠 ≤𝑆 ′ 𝑠′ if 𝑡𝑠,≤ ≤★ 𝑡𝑠′,≤.

The PROP morphism from monotone Mealy machines to circuits can then be pa-
rameterised by some ordering on the set of values V, ensuring that there is a canonical
term in SCircΣ for each monotone Mealy machine.

Definition 4.95. For a functionally complete interpretation I and total order ≤ on
V, let | |−| |≤I : MealyI → SCircΣ be the traced PROP morphism with action defined

for a monotone Mealy machine (𝑆, 𝑓 , 𝑠) as producing 𝛾≤ (𝑠) | |𝛾≤ (𝑓 ) | | .

Before proceeding to the result that this PROP morphism is behaviour-preserving,
we must show a lemma linking the behaviour of circuits in the image of | |−| |≤I to initial
outputs and stream derivatives.

Proposition 4.96. For a combinational circuit 𝑓
𝑥 𝑥
𝑚 𝑛

, let mf (𝑓 ) be the

map with action (𝑠) ↦→
s

𝑓𝑠
𝑛𝑚

𝑥
{S

I
and let 𝑔 :=

r
𝑓

zC

I
. Then,

mf (𝑓 ) (𝑠) [𝑎] = 𝜋1(𝑔(𝑠, 𝑎)) and mf (𝑓 ) (𝑠)𝑎 = mf (𝑓 ) (𝜋0(𝑔(𝑠, 𝑎))).

Proof. The machine
[

𝑓𝑠
𝑛𝑚

𝑥
]
I

is computed as the fixed point of the

machine (V𝑥 , (𝑟, 𝑎) ↦→ ⟨𝑟, 𝑔(𝑠, 𝑎)⟩ , 𝑠), which is (V𝑥 , 𝑣 ↦→ ⟨𝜋0(𝑔(𝑠, 𝑎)), 𝜋1(𝑔(𝑠, 𝑎))⟩ , 𝑠).

The output and derivative of
�������� [ 𝑓𝑠

𝑛𝑚

𝑥
]
I

��������≤
I

are the output and transition

of the Mealy machine, so the original statement holds by Lemma 4.81.

The goal of this section is to show that the translation from Mealy machines to
circuits and back again using [−]I ◦ ||−| |≤I is behaviour-preserving: while the mapping
may not be the identity inMealyI , the stream functions obtained using ⟨⟨−⟩⟩I should
be equal. This is an important new result, as it means that rather than showing results
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about the denotational semantics of circuits in SCircΣ by interpreting them in StreamI ,
we can view morphisms of the former as Mealy machines instead.

Theorem 4.97. !(−) = J−KSI ◦ ||−| |≤I .

Proof. Let (𝑆, 𝑓 ) be a monotone Mealy machine and let 𝑠 ∈ 𝑆 be an arbitrary state.
By Proposition 4.69, the initial output of !I (𝑆, 𝑓 , 𝑠) is 𝑎 ↦→ 𝑓1(𝑠, 𝑎) and the stream
derivative of !I (𝑆, 𝑓 , 𝑠) is 𝑎 ↦→ !I (𝑓0(𝑠, 𝑎)).

Now we consider the composite
q
| | (𝑆, 𝑓 , 𝑠) | |≤I

yS
I . By Definition 4.95 we have

that | | (𝑆, 𝑓 , 𝑠0) | |≤I = 𝛾≤ (𝑠) | |𝛾≤ (𝑓 ) | | ; by applying | |−| |≤I and | |−| |, there

exists a combinational circuit 𝑔 such that

| | (𝑆, 𝑓 , 𝑠0) | |≤I = 𝛾≤ (𝑠) | |𝛾≤ (𝑓 ) | | =
𝛾≤ (𝑠) 𝑔

𝑣
.

Let 𝑔′ =
r

𝑔
zC

I
; note that for all 𝑟 ∈ V𝑥 and 𝑎 ∈ V𝑚, 𝑔′(𝑣, 𝑟, 𝑎) = 𝛾≤ (𝑓 ) (𝑟, 𝑎).

We can now use Proposition 4.96 to compute the initial output and stream
derivative of

q
| | (𝑆, 𝑓 , 𝑠) | |≤I

yS
I . To show that !I (−) = J−KSI ◦ !I (−), we need to show

that these ‘agree’ with those of !I (𝑆, 𝑓 , 𝑠). For the initial output, this means we
just need to show they are equal:

q
| | (𝑆, 𝑓 , 𝑠) | |≤I

yS
I [𝑎] = 𝜋1

(
J𝑔KCI (𝑣,𝛾≤ (𝑠), 𝑎)

)
= 𝜋1

(
J| |𝛾≤ (𝑓 ) | |KCI (𝛾≤ (𝑠), 𝑎)

)
= 𝜋1

(
𝛾≤ (𝑓 ) (𝛾≤ (𝑠), (𝑎))

)
= 𝜋1 (𝛾≤ (𝑓0(𝑠, 𝑎)), 𝑓1(𝑠, 𝑎))
= 𝑓1(𝑠, 𝑎)

For the stream derivative, we need to show that as states vary over 𝑠 ∈ 𝑆, the
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stream derivative of
q
| | (𝑆, 𝑓 , 𝑠) | |≤I

yS
I is the 𝛾≤-encoding of !I (𝑆, 𝑓 , 𝑠).(q

| | (𝑆, 𝑓 , 𝑠) | |≤I
yS
I

)
𝑎
= 𝜋0

(
J𝑔KCI (𝑣,𝛾≤ (𝑠), 𝑎)

)
= 𝜋0

(
J| |𝛾≤ (𝑓 ) | |KCI (𝛾≤ (𝑠), 𝑎)

)
= 𝜋0

(
𝛾≤ (𝑓 ) (𝛾≤ (𝑠), (𝑎))

)
= 𝜋0 (𝛾≤ (𝑓0(𝑠, 𝑎)), 𝑓1(𝑠, 𝑎))
= 𝛾≤ (𝑓0(𝑠, 𝑎))

The initial outputs and stream derivatives agree, so !(−) = J−KSI ◦ ||−| |≤I .

On its own, this is a nice result to have; if we only know the specification of a
circuit in terms of a (monotone) Mealy machine, we can use the PROP morphism | |−| |≤I
to generate a circuit in SCircΣ which has the same behaviour as a stream function.
However, this is but one ingredient in our ultimate goal: the completeness of the
denotational semantics.

4.4 Completeness of the denotational semantics

We want StreamI to be a complete denotational semantics for digital circuits. This
means that for every stream function 𝑓 ∈ StreamI , there must be at least one one
circuit in SCircΣ such that its behaviour under I is 𝑓 .

Corollary 4.98. J−KSI ◦ ||−| |≤I ◦ ⟨⟨−⟩⟩I = idStreamI .

Proof. This follows immediately from Theorem 4.97 and Proposition 4.76, as we
have that J−KSI ◦ ||−| |≤I ◦ ⟨⟨−⟩⟩I = !I (−) ◦ ⟨⟨−⟩⟩I = idStreamI .

There is no isomorphism between SCircΣ and StreamI as many circuits may have
the same semantics but different syntax. Instead, we can work in equivalence classes of
syntactic circuits based on their behaviour in StreamI .

Definition 4.99 (Denotational equivalence). Two sequential circuits are deno-
tationally equivalent under I, written 𝑓𝑚 𝑛 ≈I 𝑔𝑚 𝑛 if

r
𝑓

zS

I
=

r
𝑔

zS

I
. Let SCircΣ/≈I be the result of quotienting SCircΣ by ≈I .

Every morphism in SCircΣ/≈I is a class of circuits that share the same behaviour
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under I . As we have a PROP morphism | |−| |≤I ◦ ⟨⟨−⟩⟩I , we know that for every such
behaviour there must be at least one such syntactic circuit, and subsequently exactly
one equivalence class SCircΣ/≈I . Using Corollary 4.98, we know that all the circuits in
this equivalence class have the same behaviour as the original stream function, so we
can derive an isomorphism between SCircΣ/≈I and StreamI .

Corollary 4.100. SCircΣ/≈I � StreamI .

This gives us, for the first time, a fully compositional, sound and complete, denota-
tional semantics for sequential circuits with delay and (possibly non-delay-guarded)
feedback. This formal model will serve as a backdrop against the operational and
algebraic semantics presented in the upcoming chapters.

4.5 Denotational semantics for Belnap logic

For an interpretation to admit a sound and complete denotational semantics it needs to
be functionally complete. One may wonder if this is a reasonable assumption to make,
as if it is not then the denotational semantics is not particularly useful.

To this end, we will demonstrate how the functional completeness condition holds
for the Belnap interpretation introduced in Example 4.17. This will make use of the
well-known functional completeness of Boolean logic.

Definition 4.101. Let B := {0, 1} be the set of Boolean values, and let ∧B,∨B,¬B
be the usual operations on Booleans.

Lemma 4.102. All functions B𝑚 → B can be expressed using the set of operations
{0,∧B,∨B,¬B}.

Proof. Let 𝑓 : B𝑚 → B be a Boolean function: we need to create a Boolean expres-
sion using variables 𝑣0, 𝑣1, . . . , 𝑣𝑚−1. For each 𝑣 ∈ B𝑚, we construct a conjunction of
all 𝑚 variables, in which 𝑣𝑖 is negated if 𝑣 (𝑖) = 0. We can then define a disjunction
of the conjunctions for words 𝑣 such that 𝑓 (𝑣) = 1. If there are no such words,
then the expression is 0. It is simple to check that this expression is equivalent to
the original function.

We use of this result by ‘simulating’ the Boolean operations in the Belnap realm.

Lemma 4.103. There is an isomorphism V � B2.
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Proof. There are several mappings one could choose, but for this section we will
use 𝜙 := ⊥ ↦→ 00, f ↦→ 10, t ↦→ 01,⊤ ↦→ 11.

The Belnap values f and ⊤ are falsy whereas the t and ⊤ are truthy. The value ⊥ is
neither falsy nor truthy. This is reflected in the mapping shown above; 𝜙 (𝑣) (0) is 1 if
and only if 𝑣 is falsy, and 𝜙 (𝑣) (1) is 1 if and only if 𝑣 is truthy. We write 𝜙0(𝑣) := 𝜙 (𝑣) (0)
and 𝜙1(𝑣) := 𝜙 (𝑣) (1).

This means that rather than trying to divine an expression directly from a Belnap
function, we can instead define two functions; one for how falsy the output is, and one
for how truthy is.

Definition 4.104. Let V0 := {⊥, f} and let V1 := {⊥, t}.

For 𝑣 ∈ V0, 𝜙 (𝑣) (1) = 0 (all the information is contained within the falsy bit), and
for 𝑣′ ∈ V1, 𝜙 (𝑣) (0) = 0 (all the information is contained in the truthy bit). These sets
are of particular interest when comparing to Boolean operations.

Lemma 4.105. V0 and V1 are closed under ∧ and ∨.

Proof. This can be verified by inspecting the truth tables:

∧ ⊥ f

⊥ ⊥ f
f f f

∨ ⊥ f

⊥ ⊥ ⊥
f ⊥ f

∧ ⊥ t

⊥ ⊥ ⊥
t ⊥ t

∨ ⊥ t

⊥ ⊥ t
t t t

If one looks closer, these are just the truth tables for ∨B and ∧B but with different
symbols. This means that any expression we make using ∧B and ∨B in the Boolean
realm can be ‘simulated’ in the falsy and truthy Belnap subsets. Formally, we have the
following.

Lemma 4.106. The following diagrams commute:

(V0)2 V0

B2 B

∧

(𝜙0,𝜙0) 𝜙

∨B

(V0)2 V0

B2 B

∨

(𝜙0,𝜙0) 𝜙

∧B
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(V1)2 V1

B2 B

∧

(𝜙1,𝜙1) 𝜙0

∧B

(V1)2 V1

B2 B

∨

(𝜙1,𝜙1) 𝜙1

∨B

Proof. By testing the four values in each case.

We have not discussed how the Boolean ¬B can be simulated using Belnap oper-
ations; this is because it is not possible to do this while remaining in the two Belnap
subsets. We must make use of a certain subset of Boolean functions that can be con-
structed without using ¬B.

Definition 4.107. Let the total order ≤B be defined as 0 ≤ 1.

As with V, B𝑚 inherits the order on B pointwise. Subsequently, a Boolean function
𝑓 : B𝑚 → B is monotone if 𝑓 (𝑣) ≤B 𝑓 (𝑤) whenever 𝑣 ≤B 𝑤 . Intuitively, flipping an
input bit from 0 to 1 can never flip an output bit from 1 to 0.

Lemma 4.108. All monotone functions B𝑚 → B can be expressed with the set of
operations {∧,∨, 1}.

Proof. This progresses as with Lemma 4.102, but if the element of a word 𝑣 (𝑖) = 0,
it is omitted from the conjunction rather than the variable being negated.

To show that this expresses the same truth table as the original function, con-
sider an omitted variable 𝑣𝑖 ; there exists an assignment of the other variables such
that if 𝑣𝑖 = 0 then 𝑓 (. . . , 𝑣𝑖, . . . ) = 1. By monotonicity, it must be the case that if
𝑣𝑖 = 1 then 𝑓 (. . . , 𝑣𝑖, . . . ) = 1, so no information is lost by omitting the negation.

If 𝑓 (0, 0, . . . , 0) = 1, then the inner conjunction is empty and must be represented
by the constant 1, (the unit of ∧B). This is valid due to monotonicity, as if 𝑓
produces 1 for the least element, then it must produce 1 for all inputs.

Corollary 4.109. All monotone functions (V0)𝑚 → V0 can be expressed with the
operations {∧,∨, f}, and all monotone functions (V1)𝑚 → V1 can be expressed with
the operations {∧,∨, t}.

Proof. As there is an order isomorphism V0 � V1 � B, any monotone function in
the Belnap subsets can be viewed as a monotone Boolean function. This means
the strategy of Lemma 4.108 can be applied using Lemma 4.106 to substitute the
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appropriate Belnap operation.

All the pieces are now in place to express the final functional completeness result;
we just need to ‘explode’ a Belnap value into its falsy and truthy components, and then
unify the two at the end.

Definition 4.110. Let the functions 𝜓 0
0 ,𝜓

1
0 : V→ V0 and 𝜓 0

1 ,𝜓
1
1 : V→ V1 be de-

fined according to the table below.

𝜓 0
0 𝜓 1

0 𝜓 0
1 𝜓 1

1
⊥ ⊥ ⊥ ⊥ ⊥
t ⊥ f ⊥ t
f f ⊥ t ⊥
⊤ f f t t

The functions𝜓 0
0 and𝜓 0

1 send a value 𝑣 to f or t respectively if 𝑣 is falsy;𝜓 1
0 and𝜓 1

1
send a value 𝑣 to f or t if 𝑣 is truthy. Otherwise, they produce ⊥.

Lemma 4.111. The functions in Definition 4.110 can be expressed using the op-
erations {∧,∨,¬,⊥}.

Proof. From left to right, the columns in the table above are the functions 𝑣 ↦→
− ∧ ⊥, 𝑣 ↦→ ¬(− ∨ ⊥), 𝑣 ↦→ ¬(− ∧ ⊥) and 𝑣 ↦→ − ∨ ⊥.

Definition 4.112. For a monotone function 𝑓 : V𝑚 → V, let 𝑓0 : ((V0)𝑚)2 → V0 be
defined as 𝑓0(𝜓 0

0 (𝑣),𝜓 1
0 (𝑣)) := 𝜙0(𝑓 (𝑣)). Similarly, let 𝑓1 : ((V1)𝑚)2 → V1 be defined

as 𝑓1(𝜓 0
1 (𝑣),𝜓 1

1 (𝑣)) := 𝜙1(𝑓 (𝑣)).

By putting these pieces all together we can express all monotone Belnap functions.

Theorem 4.113. All monotone functions V𝑚 → V can be expressed using the
operations {∧,∨,¬,⊔,⊥, t, f}.

Proof. This follows by defining a function with the same behaviour as the original,
but made up of components known to be expressible using the operations specified.

Let 𝑓 ′ : V𝑚 → V2 be defined as 𝑓 ′(𝑣) :=
(
𝑓0(𝜓 0

0 (𝑣),𝜓 1
0 (𝑣)), 𝑓1(𝜓 0

1 (𝑣),𝜓 1
1 (𝑣))

)
..

By Corollary 4.109, 𝑓0 and 𝑓1 can be defined using {∧,∨, t, f}, and by Lemma 4.111,
𝜓 0
0 ,𝜓

1
0 ,𝜓

0
1 and 𝜓 1

1 can be defined using {∧,∨,⊥}.
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The output of 𝑓 ′(𝑣) is (𝜙0(𝑓 (𝑣)), 𝜙1(𝑓 (𝑣))) by definition; the falsiness and the
truthiness of 𝑓 (𝑣). To combine the two outputs into a single output we want to
implement the following truth table:

⊥ ⊥ ⊥
⊥ t t
f ⊥ f
f t ⊤

This is clearly just the truth table for ⊔, so the entire expression can be defined
using the operations {∧,∨,¬,⊔,⊥, t, f}.

Example 4.114. Consider the following truth table (in fact just the table for ¬).

⊥ ⊥
t f
f t
⊤ ⊤

We translate these into the falsy and truthy tables as follows:

⊥⊥ ⊥
⊥f f
f⊥ ⊥
ff f

⊥⊥ ⊥
⊥t ⊥
t⊥ t
tt t

Using Corollary 4.109, the corresponding Belnap expressions are

(𝑣0, 𝑣1) ↦→ 𝑣1 ∧ (𝑣0 ∨ 𝑣1) (𝑣0, 𝑣1) ↦→ 𝑣0 ∨ (𝑣0 ∧ 𝑣1)

To combine these expressions on two inputs into a single expression on one input,
we need to add the appropriate translators. We obtain the expression

𝑣0 ↦→ ¬(⊥ ∨ 𝑣0) ∧ ((⊥ ∧ 𝑣0) ∨ ¬(⊥ ∨ 𝑣0)) ⊔ ¬(⊥ ∧ 𝑣0) ∨ (¬(⊥ ∧ 𝑣0) ∧ (⊥ ∨ 𝑣0))

which can be verified to act the same as the original table.

Although this result only applies to functions with a single output, it is easily
generalised to arbitrary-output functions.

Corollary 4.115. All monotone functions V𝑚+1 → V𝑛 can be expressed using the
operations {∧,∨,¬,⊥,⊔}.
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Proof. By repeating the process in Theorem 4.113 for each output.

Since an expression can be using only operations with counterparts in the syntactic
realm, the map | |−| |B : FuncIB → SCircΣB sends functions 𝑓 to circuits of the form

𝑓0

𝑓1

t

f

in which 𝑓0 and 𝑓1 are ‘syntactic’ falsy and truthy disjunctive normal forms
respectively. While the truthy circuit is just a regular disjunctive normal form, because
the falsy operations are simulated by the opposite gate, it looks a bit different.

Definition 4.116 (Conjunction). A Belnap circuit is a truthy conjunction if it is
the infinite register t or of the form 𝑓𝑚 , where 𝑓 is
another truthy conjunction. A Belnap circuit is a falsy conjunction if it is the

infinite register f or of the form 𝑓𝑚
, where 𝑓 is another

falsy conjunction.

Definition 4.117 (Disjunctive normal form). A Belnap circuit is in truthy disjunc-

tive normal form if it is the eliminator or of the form
𝑓𝑚

𝑔𝑛
, where

𝑓 is in truthy disjunctive normal form and 𝑔 is a truthy conjunction.
A Belnap circuit is in falsy disjunctive normal form if it is the eliminator or

of the form
𝑓𝑚

𝑔𝑛
, where 𝑓 is in falsy disjunctive normal form and

𝑔 is a falsy conjunction.

The two subcircuits are falsy and truthy disjunctive normal forms, and can be
defined syntactically by using a ‘composite fork’ to copy the inputs for each clause in
the normal form.

Definition 4.118. For 𝑛 ∈ N, an 𝑚,𝑘-fork Δ𝑚,𝑘𝑚 𝑘𝑚 is defined inductively
with Δ𝑚,0𝑚 𝑘𝑚 := 𝑚 𝑚 and Δ𝑚,𝑘+1 := 𝑚

𝑚

Δ𝑚,𝑘 𝑚
.
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Definition 4.119. Let | |−| |B : FuncIB → CCircΣB be defined as the map sending
a function 𝑓 : V𝑚 → V𝑛 to a circuit

𝑚

ℎ0

ℎ1

𝑛

Δ𝑚,𝑛

Δ𝑚,𝑛

𝑔0

𝑔1

where 𝑔0 and 𝑔1 only contain identity and elimination constructs, and
ℎ0 and ℎ1 and in falsy and truthy conjunctive normal form respectively,

defined in the obvious way derived from the procedure detailed in this section.

This means that the denotational semantics for sequential circuits can definitely
be used for the Belnap interpretation IB. In particular, this means we can translate
any Mealy machine in MealyIB (and subsequently, any stream function in IB𝜔 ) into a
syntactic circuit in SCircΣB .

Even when applying the above techniques to small concrete examples, the results
quickly balloon in size; a tool has been developed to generate Belnap expressions from
functions and truth tables, and it can be found at https://belnap.georgejkaye.com.

4.6 Denotational semantics for generalised circuits

Although we have discussed the denotational semantics in terms of monochromatic
circuit signatures, it is straightforward to extend the results to categories generated
over generalised circuit signatures

In the semantic categories FuncI , StreamI , and MealyI , the morphisms are all
variants on functions of the form V𝑚 → V𝑛 that operate on powers of elements in V:
one element for each (single-bit) input or output wire. In the generalised setting, these
input and output wires may not all be the same width, so the input and output sets
must be powers of powers of values.

Notation 4.120. Given a set 𝐴 and a word 𝑣 ∈ N★
+ of length 𝑛, we write 𝐴𝑣 :=

𝐴𝑣 (0) ×𝐴𝑣 (1) × · · · ×𝐴𝑣 (𝑛−1).

Note that for a word 𝑚 := 11 . . . 1 of length 𝑘 , the set 𝐴𝑚 = 𝐴1 × 𝐴1 × . . . 𝐴1 is
isomorphic to 𝐴𝑘 , much like how setting the set of colours in a coloured PROP to the
singleton recovers a monochromatic PROP.

The semantic categories can now be extended to these coloured interfaces.

https://belnap.georgejkaye.com
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Definition 4.121. Let Func+I be the N+-coloured PROP in which the morphisms
𝑚 → 𝑛 are the monotone functions V𝑚 → V𝑛. Let Stream+I be the N+-coloured
PROP in which the morphisms 𝑚 → 𝑛 are the causal, monotone, and finitely
specified stream functions (V𝑚)𝜔 → (V𝑛)𝜔 . Let Mealy+I be the N+-coloured PROP
in which the moprhisms 𝑚 → 𝑛 are the monotone (V𝑚,V𝑛)-Mealy machines.

The various PROP morphisms between these categories are defined in a similar
way to the monochromatic versions, but now we have to account for the structural
generators for each 𝑛 ∈ N+, as well as the bundlers.

Definition 4.122. Let J−KC+I : CCirc+Σ → Func+I be the coloured PROP morphism
with action defined as

r
𝑚 𝑛𝑝

zC+

I
:= J𝑝K

r
𝑛

𝑛
𝑛

zC+

I
:= (𝑣) ↦→ (𝑣, 𝑣)

r
𝑛

zC+

I
:= (𝑣) ↦→ ()

r
𝑛

𝑛
𝑛

zC+

I
:= (𝑣,𝑤) ↦→ 𝑣 ⊔𝑤

r
𝑛

zC+

I
:= () ↦→ ⊥𝑛

t

𝑛
1
1... 𝑛

|C+

I

:= (𝑣) ↦→ (𝑣 (0), 𝑣 (1), . . . , 𝑣 (𝑛 − 1))

t

𝑛
1
1 ...𝑛

|C+

I

:= (𝑣0, 𝑣1, . . . , 𝑣𝑛−1) ↦→ (𝑣0𝑣1 . . . 𝑣𝑛−1)

The map from coloured circuits to Mealy machines proceeds in a similar manner.

Definition 4.123. Let [−]+I : SCirc+Σ → Mealy+I be the traced PROP morphism
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defined on generators as[
𝑔

]+
I
:= ({𝑠}, (𝑣0, . . . , 𝑣𝑚−1) ↦→ ⟨𝑠, J𝑔K (𝑣0, 𝑣1, . . . , 𝑣𝑚−1)⟩ , 𝑠)[

𝑛
𝑛
𝑛

]+
I
:= ({𝑠}, 𝑣 ↦→ ⟨𝑠, (𝑣, 𝑣)⟩ , 𝑠)[

𝑛
𝑛
𝑛

]+
I
:= ({𝑠}, (𝑣,𝑤) ↦→ ⟨𝑠, 𝑣 ⊔𝑤⟩ , 𝑠)[

𝑛

]+
I
:= ({𝑠}, 𝑣 ↦→ ⟨𝑠, 𝑠⟩ , 𝑠)[

𝑛
1
1... 𝑛

]+
I

:= ({𝑠}, (𝑣0, 𝑣1, . . . , 𝑣𝑛−1) ↦→ ((𝑣0), (𝑣1), . . . , (𝑣𝑛−1)), 𝑠)[
𝑛

1
1 ...𝑛

]+
I

:= ({𝑠}, ((𝑣0), (𝑣1), . . . , (𝑣𝑛−1)) ↦→ (𝑣0, 𝑣1, . . . , 𝑣𝑛−1), 𝑠)[
𝑛𝑣
]+
I := ({𝑠𝑣 , 𝑠⊥}, {𝑠𝑣 ↦→ ⟨𝑠⊥, 𝑣⟩ , 𝑠⊥ ↦→ ⟨𝑠⊥,⊥⟩}, 𝑠𝑣 )[

𝑛𝑛

]+
I
:= ({𝑠𝑣 | 𝑣 ∈ V𝑛}, (𝑠𝑣 ,𝑤) ↦→ ⟨𝑠𝑤 , 𝑣⟩ , 𝑠⊥𝑛 )

Although morphisms in Mealy+I have different interfaces to those in Stream+I , they
are still monotoneMealy machines so it is simple to translate them into stream functions
or coloured circuits.

Definition 4.124. Let the coloured PROP morphisms !+I (−) : Mealy+I → Stream+I ,
⟨⟨−⟩⟩+I : Stream+I → Mealy+I and | |−| |≤+I : Mealy+I → SCirc+Σ be defined as before,
and let J−KS+I : SCirc+Σ → Stream+I be defined as !+I (−) ◦ [−]

+
I .

By putting all these coloured PROP morphisms together, we can show the same
results as we did in the previous section.

Theorem 4.125. !+I (−) = J−KS+I ◦ !+I (−) and J−KS+I ◦ ||−| |≤+I ◦ ⟨⟨−⟩⟩
+
I = idStream+I .

As before, we derive a notion of denotational equivalence for generalised circuits.

Definition 4.126. Two generalised sequential circuits are denotationally equiva-
lent under I, written 𝑓𝑚 𝑛 ≈+I 𝑔𝑚 𝑛 if

r
𝑓

zS+

I
=

r
𝑔

zS+

I
. Let

SCirc+
Σ/≈+I

be the result of quotienting SCircΣ by ≈+I .

Corollary 4.127. SCirc+
Σ/≈+I

� Stream+I .



Chapter 5

Operational semantics

With the sound and complete denotational semantics, the behaviour of circuits is
determined by observing their behaviour as stream functions. This already gives us a
perspective on digital circuits closer to that of programming languages. To compare the
behaviour of two circuits in SCircΣ, we examine their corresponding stream functions.

Denotational semantics is not the be-all and end-all of circuit semantics. Crucially,
it obscures the structure of a circuit by compressing all the behaviour into one function:
we don’t know why the circuit is behaving the way it does, just that something has
caused it to do so. When it comes to circuit design, the structure of the circuit is
important, as that is what is going to be printed onto silicon. Space is at a premium,
so knowing how each component contributes to the output behaviour is of critical
importance.

We now turn our attention to the next course in our menu of semantics: operational
semantics. This is quite a different beast to denotational semantics: rather than assigning
a mathematical structure to each circuit, semantics are derived from how something is
executed. One can think of an operational semantics as stepping through a program
using a debugger, with rules applied in order to derive the next state.

Operational semantics is another classic concept in computer science; ‘steps’ of
execution were used to define the semantics of ALGOL 68 [VMP+76]. The name itself,
as with many topics of the time, is attributed to Dana Scott [Sco70], who acknowledged
that even with the abstraction of denotational semantics, ‘the operational aspects cannot
be completely ignored’.
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Example 5.1. Recall the language of expressions from Example 4.1. We can define
an observational semantics on this language with the following set of rules:

𝑛 ⇒ 𝑛
(Value)

𝑒0 ⇒ 𝑛0 𝑒1 ⇒ 𝑛1

𝑎𝑑𝑑 𝑒0 𝑒1 ⇒ 𝑛0 + 𝑛1
(Add)

𝑒0 ⇒ 𝑛0 𝑒1 ⇒ 𝑛1

𝑚𝑢𝑙 𝑒0 𝑒1 ⇒ 𝑛0 · 𝑛1
(Mul)

We can use these rules to reduce expressions to values. Two expressions have the
same semantics if they reduce to the same expression. Formally this can be written
as a proof tree:

4⇒ 4 2⇒ 2

𝑚𝑢𝑙 4 2⇒ 8

2⇒ 2 3⇒ 3

𝑎𝑑𝑑 2 3⇒ 5

𝑎𝑑𝑑 (𝑚𝑢𝑙 4 2) (𝑎𝑑𝑑 2 3) ⇒ 13

The operational semantics described thus far is commonly known as structural
operational semantics [Plo81]; it shows how the behaviour of the whole is represented
by the behaviour of its parts. However, deriving a proof tree as above can be clunky: to
find the meaning of a large term one has to ‘drill down’ into the contexts until a value
is reached before propagating these values back up the tree.

A more intuitive way to view this style of operational semantics is using a reduction
semantics. First applied by Plotkin [Plo75] before being properly coined and generalised
in the subsequent decade [FF87; Fel87], a reduction semantics specifes a set of rules
which can be successively applied to individual components of some larger context.
These reduction rules can be derived from the rules in the main operational semantics
by replacing subexpressions in derivations by the primitives in the language. These
rules can then be applied to the ‘smallest’ terms in the expression (those higher up in
the proof tree), reducing these to primitives themselves, such that reductions may be
applied to their parent expressions and so on.

Example 5.2. Returning to Example 5.1, the two rules of the corresponding reduc-
tions semantics are 𝑎𝑑𝑑 𝑛0 𝑛1

(Add)
⇝ 𝑛0 + 𝑛1 and 𝑚𝑢𝑙 𝑛0 𝑛1

(Mul)
⇝ 𝑛0 · 𝑛1. Note that

as the numbers 𝑛 are the ‘primitives’ of the language, there is no corresponding
reduction for the (Value) rule. Using these reductions an expression can be reduced
to a value.

𝑎𝑑𝑑 (𝑚𝑢𝑙 4 2) (𝑎𝑑𝑑 2 3) (Mul)
⇝ 𝑎𝑑𝑑 8 (𝑎𝑑𝑑 2 3) (Add)

⇝ 𝑎𝑑𝑑 8 5 (Add)
⇝ 13

We write ∗⇝ for a sequence of reduction steps. Such a reduction sequence to a value
is not necessarily canonical; while there is one canonical proof tree for a given term
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there may be many reduction sequences. In an ideal reduction system this should not
be an issue.

Definition 5.3. A reduction system is confluent if, for any term 𝑒, if there exists
distinct reductions 𝑒 ⇝ 𝑒1 and 𝑒 ⇝ 𝑒2, then there exists term 𝑒3 along with
reduction sequences 𝑒1

∗
⇝ 𝑒3 and 𝑒2

∗
⇝ 𝑒3.

While it is important that different reduction sequences should always converge, it
is equally important that we are not stuck performing reductions forever.

Definition 5.4. A reduction system is terminating if, for every term 𝑒, there is no
infinite reduction sequence starting from 𝑒.

If a reduction system is terminating, then repeatedly applying reductions will
eventually lead to a term with no opportunity to apply any more.

Definition 5.5. A term is in normal form if no reductions apply to it.

If a terminating reduction system is also confluent, every term must have a unique
such normal form. In the setting of an operational semantics, this normal form is the
behaviour of the term.

Example 5.6. The reduction rules in Example 5.2 are clearly terminating since
they both reduce the number of operations in a term. The rules are also confluent:
we could have chosen a different order of reductions but the result is the same.

𝑎𝑑𝑑 (𝑚𝑢𝑙 4 2) (𝑎𝑑𝑑 2 3) (Mul)
⇝ 𝑎𝑑𝑑 8 (𝑎𝑑𝑑 2 3) (Add)

⇝ 𝑎𝑑𝑑 8 5 (Add)
⇝ 13

This means that 13 is the normal form of 𝑎𝑑𝑑 (𝑚𝑢𝑙 4 2) (𝑎𝑑𝑑 2 3) and subsequently
the behaviour of the term.

When defining an operational semantics for digital circuits we prefer to use the
reduction semantics style of presentation, as one of our motivations is for a computer
to evaluate circuits step-by-step.

As we will come to see, it is not feasible to create a small-step reduction semantics
for digital circuits while remaining terminating and confluent. However, what we can
do is specify some larger transformations to apply to a circuit followed by some more
traditional exhaustive reductions.

Our goal for this chapter is to develop a sound and complete notion of observational
equivalence i.e. circuits are related if and only if ‘executing’ them using the operational
semantics produces the same values. To determine which transformations and reduc-
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Figure 5.1: The SR NOR latch from Example 3.18 in global trace-delay
form

tions are sound, we turn to the denotational semantics; a reduction between circuits
𝑓𝑚 𝑛 ⇝ 𝑔𝑚 𝑛 is sound with respect to some interpretation I if and only if

r
𝑓𝑚 𝑛

zS

I
=

r
𝑔𝑚 𝑛

zS

I
.

Remark 5.7. The content of this chapter is a refined version of [GKS24, Sec. 4].

5.1 Feedback

One of the major issues that comes with trying to reduce circuits in SCircΣ is the
presence of feedback. Without proper attention, one could end up infinitely unfolding
and we never produce any output values. The first portion of our operational semantics
revolves around some global transformations to make a circuit suitable for reduction.

The first observation we make does not even need anything new to be defined as it
follows immediately from axioms of STMCs.

Lemma 5.8 (Global trace-delay form). For a sequential circuit 𝑓𝑚 𝑛 there ex-

ists a combinational circuit 𝑓
𝑚

𝑦
𝑧

𝑥

𝑛

𝑦
𝑧

𝑥

and values 𝑣 ∈ V𝑧 such that 𝑓𝑚 𝑛 =

𝑣 𝑓
𝑚 𝑛

𝑥
𝑦

𝑧
by axioms of STMCs.

Proof. By applying the axioms of traced categories; any trace can be ‘pulled’ to
the outside of a term by superposing and tightening. For the delays, a trace can
be introduced using yanking and then the same procedure as above followed.

Example 5.9. The SR NOR latch circuit from Example 3.18 is assembled into
global trace-delay form in Figure 5.1.

This form is evocative of what we saw when mapping from Mealy machines to
circuits in the previous section, but rather than the state being determined by one word,
the instantaneous values and the delays are kept separate.
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⊥

Figure 5.2: Applying the (Mealy) rule to the circuit in Figure 5.1

Definition 5.10 (Pre-Mealy form). A sequential circuit is in pre-Mealy form if it

is in the form
𝑓

𝑠

𝑛𝑚

𝑦
𝑥

.

Our first reduction transforms a circuit from global trace-delay form to pre-Mealy
form.

Lemma 5.11. The following rule is sound:

𝑣 𝑓
𝑚 𝑛

𝑥
𝑦

𝑧

(Mealy)
⇝

𝑓
⊥

𝑣

𝑧 𝑦
𝑥

Proof. It is a simple exercise to check the corresponding stream functions.

By assembling a circuit into global trace-delay form and applying the (Mealy)
rule, we can construct a word 𝑠 from the juxtaposition of ⊥ elements for each register
combined with the instantaneous values 𝑣 i.e. using the notation of the above lemma
𝑠 := ⊥𝑦𝑣 . This word represents the initial state of the circuit, but it is by no means
unique: it depends on how the circuit is put into global trace-delay form. What matters
most is that we can do it.

Corollary 5.12. For any sequential circuit 𝑓𝑚 𝑛 , there exists at least one valid
application of the Mealy rule.

Example 5.13. The (Mealy) rule is applied to the global trace-delay form SR NOR
latch in Figure 5.1. Here the initial state word is just ⊥.

The result of applying the (Mealy) reduction still differs from the image of | |−| |≤I
as it may have a trace with no delay on it: an instance of non-delay-guarded feedback.

The mere mention of non-delay-guarded feedback may trigger alarm bells in the
minds of those well-acquainted with circuit design. It is often common in industry to
enforce that circuits have no non-delay-guarded feedback; one might ask if we should
also enforce this tenet in order to stick to ‘well-behaved’ circuits.
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C

X

X

𝑓

𝑔

C

C

𝑔

𝑓

Figure 5.3: A useful cyclic combinational circuit [MSB12, Fig. 1], and
a possible interpretation in SCircΣ.

Remark 5.14. Categories with feedback [KSW02] are a weakening of traced cat-
egories that remove the yanking axiom: this effectively makes all traces delay-
guarded. Categories with delayed trace [SK19] weaken this further by removing
the sliding axiom, so no components can be ‘pushed round’ into the next tick
of execution. Neither of these are suitable for us as we actually want to allow
non-delay-guarded feedback.

In fact, careful use of non-delay-guarded feedback can still result in useful circuits
as a clever way of sharing resources [Mal94; Rie04; MSB12]. The minimal circuit to
implement a function often must be constructed using cycles [Riv77; RB03].

Example 5.15. A particularly famous circuit [Mal94] which is useful despite the
presence of non-delay-guarded feedback is shown in Figure 5.3, where 𝑓 and

𝑔 are arbitrary combinational circuits. The trapezoidal gate is a multiplexer ;
it has a vertical control input and two horizontal data inputs. The multiplexer is

defined as := . The multiplexer is effectively an if

statement: when the control is f the output is the first data input and when it is t
the output is the second data input.

The circuit in Figure 5.3 has no state and its trace is global so it is already
in pre-Mealy form, and has non-delay-guarded feedback. Despite this, it produces
useful output when the control signal is true or false: when the control signal is
f then the behaviour of the circuit is

r
𝑓 𝑔

zC

I★
and when the control is t

then the behaviour is
r

𝑔 𝑓

zC

I★
. The feedback is just used as a clever way

to share circuit components.

A combinational circuit surrounded by non-delay-guarded feedback still implements
a function, as there are no delay components. Nevertheless, non-delay-guarded feedback
does still block our path to future transformations, so it must be eliminated. Using a
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methodology also employed by [RB12], we turn to the Kleene fixed-point theorem.

Lemma 5.16. For a monotone function 𝑓 : V𝑛+𝑚 → V𝑛 and 𝑖 ∈ N, let 𝑓 𝑖 : V𝑚 → V𝑛

be defined as 𝑓 0(𝑥) = 𝑓 (⊥𝑛, 𝑥) and 𝑓 𝑘+1(𝑥) = 𝑓 (𝑓 𝑘 (𝑥), 𝑥). Let 𝑐 be the length of
the longest chain in the lattice V𝑛. Then, for 𝑗 > 𝑐, 𝑓 𝑐 (𝑥) = 𝑓 𝑗 (𝑥).

Proof. Since 𝑓 is monotone and V𝑛 is finite, the former has a least fixed point by
the Kleene fixed-point theorem. This will either be some value 𝑣 or the ⊤ element.
The most iterations of 𝑓 it would take to obtain this fixed point is 𝑐, i.e. the function
produces a value one step up the lattice each time.

Definition 5.17 (Iteration). Given a combinational circuit 𝑓
𝑥 𝑥
𝑚 𝑛

, its 𝑛-th iter-
ation 𝑓 𝑛𝑚

𝑥
𝑛

is defined inductively over 𝑛 in the following way:

𝑓 0
𝑥
𝑛

𝑚 := 𝑓
𝑚

𝑥
𝑛 𝑓 𝑘+1

𝑥
𝑛

𝑚 :=
𝑓

𝑓 𝑘

𝑥
𝑛

𝑚

The trace in StreamI is by the least fixed point, computed by repeatedly applying 𝑓
to itself starting from ⊥. The above lemma gives a fixed upper bound for the number of
times we need to apply 𝑓 to reach this fixed point, based on the size of the lattice. We
can use this in the syntactic setting.

Definition 5.18 (Unrolling). For an interpretation with values V, the unrolling of a
combinational circuit 𝑓

𝑥 𝑥
𝑚 𝑛

, written 𝑓 †𝑚
𝑥
𝑛

, is defined as 𝑓 𝑐+1𝑚
𝑛
𝑥 where

𝑐 is the length of the longest chain in V𝑥 .

Using these constructs we can eliminate non-delay-guarded feedback around a
combinational circuit.

Proposition 5.19. The instant feedback rule 𝑓
(IF)
⇝ 𝑓 † is sound.

Proof. By Lemma 5.16, applying the function (𝑥) ↦→ 𝜋𝑥

(r
𝑓

zC

I

)
(𝑥, 𝑣) to

itself 𝑐 times reaches a fixed point. The circuit is combinational so each element
of the output

r
𝑓

zS

I
(𝜎) (𝑖) is a function; this means that Lemma 5.16 can be

applied to each element.
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⊥

Figure 5.4: Applying the (IF) rule to the circuit in Figure 5.2

𝑔

𝑓

𝑔

𝑓

𝑔

𝑓

Figure 5.5: Applying the (IF) rule to the circuit in Figure 5.3

Example 5.20. In Figure 5.4, the IF is applied to the SR latch circuit in pre-Mealy
form from Figure 5.1.

Example 5.21. In Figure 5.5, the (IF) rule is applied to the cyclic combinational
circuit from Figure 5.3.

If applied locally for every feedback loop, the (IF) rule would cause an exponential
blowup, but if a circuit is in global trace-delay form, the rule need only be applied once
to the global loop. Although the value of 𝑐 increases as the number of feedback wires
increases, it only does so linearly in the height of the lattice.

Remark 5.22. [MSB12] uses a ternary set of values and monotone functions to
present constructive circuits: the circuits that stabilise to unique Boolean values
for all Boolean inputs. This definition excludes circuits that oscillate between two
values, as these are not considered to be monotone circuits. Conversely, in our
model such circuits can be monotone. For example a Belnap circuit may alternate
between t and f because these occupy the same level of the lattice.

With a method to eliminate non-delay-guarded feedback, we can establish the class
of circuits which will act as the keystone of both the operational semantics in this
section and the algebraic semantics of the next.

Definition 5.23 (Mealy form). A sequential circuit 𝑓𝑚 𝑛 is in Mealy form if

it is in the form 𝑔𝑠
𝑛𝑚

𝑥
.
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Theorem 5.24. For a sequential circuit 𝑓𝑚 𝑛 , there exists at least one combi-

national circuit 𝑔𝑥 𝑥
𝑚 𝑛

and values 𝑠 ∈ V𝑥 such that 𝑓𝑚 𝑛
∗
⇝ 𝑔𝑠

𝑛𝑚
by applying (Mealy) followed by (IF).

Proof. Any circuit can be assembled into global trace-delay form by Lemma 5.8
and furthermore transformed into pre-Mealy form by using (Mealy). Since the core
of a circuit in pre-Mealy form is combinational and has a non-delay-guarded trace,
(IF) can be applied to it to produce a circuit with only delay-guarded feedback: a
circuit in Mealy form.

Non-delay-guarded feedback can be exhaustively unrolled because the circuit es-
sentially models a function despite the presence of the trace: this means that we can
transform the circuit without having to ‘look into the future’. This is not the case
for delay-guarded feedback as the internal state of the circuit may depend on future
inputs. Indeed, a circuit with delay-guarded feedback may never ‘settle’ on one internal
configuration but rather oscillate between multiple states. This is simply a facet of
sequential circuits and there is nothing we can do about that. What we can do is show
how to process inputs at a given tick of the clock.

5.2 Productivity

It is not possible to reduce an open circuit to some output values, as there will be open
wires awaiting the next inputs. Nevertheless, if we precompose a circuit with some
inputs we can provide some rules for propagating them across the circuit.

Formally, for sequential circuit 𝑓𝑚 𝑛 and values 𝑣 ∈ (V𝑚)𝜔 , this corresponds
to finding reductions such that 𝑓𝑣 𝑛𝑚

∗
⇝ 𝑔 𝑤 𝑛𝑚 . We first consider the

combinational case, with our final global transformation.

Lemma 5.25 (Streaming). The following streaming rule is sound:

𝑓𝑣
(Str)
⇝

𝑓𝑣

𝑓

Proof. Once again this can be shown by considering the stream semantics. First

note that by unfolding the notation, 𝑓𝑣 := 𝑓
𝑣

. The streaming

rule is then effectively ‘pushing’ the combinational circuit 𝑓 across the join.
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f
t

Figure 5.6: Applying Str with inputs tf to the circuit from Figure 5.4

The join is not a natural transformation so this does not hold in general, but
because one argument is an instantaneous value and the other is a delay, at least
one of the inputs to the join will be ⊥ for a given circuit. As the interpretations
of combinational circuits must be ⊥-preserving, the circuit can safely be pushed
across the join and delay.

The streaming rule shows that when a combinational circuit is applied to an input
with an instantaneous and a delayed component, the circuit can be copied so that one
copy handles what is happening ‘now’ and the other handles what is happening ‘later’.

Example 5.26. Pulsing the signals ft to the inputs of an SR NOR latch starts the
procedure for ‘setting’ the latch, causing it to output tf. Figure 5.6 shows how the
Str rule is applied to the unrolled SR NOR circuit from Figure 5.4 with these inputs
to create a copy for what is happening ‘now’ and another for what is happening
‘later’.

As there is a delay on the bottom argument of the join, the output of a streamed
circuit at the current tick is now contained entirely in the top argument of the join. The
final rules we present will reduce this copy to values, as desired.

Lemma 5.27 (Value rules). The following value rules are sound:

𝑣
(F)
⇝

𝑣

𝑣

𝑣

𝑤

(J)
⇝ 𝑣 ⊔𝑤

𝑣
(E)
⇝ 𝑣 𝑝

(PI )⇝ J𝑝K(𝑣)

Proof. Straightforward by considering the interpretations of values as stream func-
tions.

Reducing the ‘now’ core is the only time in which exhaustive application is required,
as more is involved than just copying circuit components.
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Lemma 5.28. Applying the value rules is confluent.

Proof. There are no overlaps between the rules.

Lemma 5.29. For a combinational circuit 𝑓𝑚 𝑛 and 𝑣 ∈ V𝑚, there exists
𝑤 ∈ V𝑛 such that applying the value rules to 𝑓𝑣 terminates at 𝑤 .

Proof. By induction on the structure of 𝑓𝑚 𝑛 .

These rules are all we need to propagate input values across a circuit.

Corollary 5.30. For a circuit
𝑓𝑠

𝑛

𝑥

𝑣𝑚
there exist 𝑡 ∈ V𝑥 and 𝑤 ∈

V𝑛 such that
𝑓𝑠

𝑛

𝑥

𝑣𝑚

∗
⇝

𝑓
𝑛

𝑥

𝑚
𝑡

𝑤

by applying Str once

followed by the value rules exhaustively.

Example 5.31. Figure 5.7 shows how the value rules are applied to the streamed
circuit from Figure 5.6. After performing all the reductions exhaustively on the
‘now’ circuit, the next state is t, the first output is ⊥ and the second is f. While the
next state and second output make sense (if we apply Set, the state of the latch
should turn true and the negated output false), the first output may raise eyebrows.
This arises due to the presence of the delay; it will take another cycle to produce
the expected output tf.

By now putting together all the components in this section and the previous, we
have a productive strategy for processing inputs to any sequential circuit.

Corollary 5.32 (Productivity). For sequential circuit 𝑓𝑚 𝑛 and inputs 𝑣 ∈
V𝑚, there exists 𝑤 ∈ V𝑛 such that 𝑓𝑣 𝑛𝑚

∗
⇝ 𝑔 𝑤 𝑛𝑚 by applying

(Mealy), (IF) and (Str) once successively followed by the value rules exhaustively.

Remark 5.33. As we saw in Corollary 5.30, applying (Str) followed by the value
rules to a circuit in Mealy form produces another circuit in Mealy form. This means
that for one circuit and a long waveform stream of inputs, (Mealy) and (IF) need
only be applied once at the very start before processing values.
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f
t

∗
⇝

f
t

t
f

f t ∗
⇝

⊥
f

t

Figure 5.7: Using the value rules to reduce the streamed SR NOR latch
circuit from Figure 5.6.

Remark 5.34. This style of operational semantics differs from some other ap-
proaches in the area, such as the work on signal flow graphs [BSZ21]. In these
works, the operational semantics is specified in terms of the state transitions that
take place in a circuit over time. For example, the rule that applies to the fork in
signal flow graphs is

𝑡 ⊲
𝑘−−→
𝑘 𝑘

𝑡 + 1 ⊲

where 𝑡 is the current timestep, 𝑘 is the input signal and 𝑘 𝑘 is the (forked) output
signal. Note that the fork itself does not change; the ‘computation’ occurring is
contained entirely within the inputs and outputs.

In our world of digital circuits we are more interested in propagating values to
see how this affects the internal structure of a circuit; this is another instance of
how we are working with a causal rather than relational semantics. This means
we specify inputs as explicit components, and the reductions actually change the
structure of the circuit.

𝑣 ⇝
𝑣

𝑣
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5.3 Observational equivalence

In the denotational semantics, we defined the relation of denotational equivalence, in
which circuits are related if their denotations as streams are equal. For operational se-
mantics we have another notion of relation on circuits: that of observational equivalence.
This is due to Morris [Mor69], who named it ‘extensional equivalence’: essentially,
two processes are observationally equivalent if they cannot be distinguished by their
input-output behaviour.

Testing for observational equivalence is traditionally performed by checking that a
program behaves the same in all contexts. For digital circuits, this means that for all
possible streams of inputs, the circuit produces the same outputs. Of course, there are
infinitely many streams of inputs, despite the set of values being finite. Fortunately,
since circuits are constructed from a finite number of components, we need not check
them all.

Lemma 5.35. Let 𝑓 be a sequential circuit with 𝑐 delay components. Then
applying Corollary 5.32 successively to a Mealy form of this circuit will produce at
most |V|𝑐 unique states.

Proof. The only varying elements of the state word are contributed by the 𝑐 delay
components, as the values transition to ⊥.

To test all of the possible internal states of a circuit, we must use sequences of inputs
long enough in time to guarantee that every possible state of a circuit is triggered.

Notation 5.36 (Waveform). The empty waveform is defined as 𝜀𝑛 𝑛 :=
𝑛 𝑛 . Given values 𝑣 ∈ V𝑛 and sequence 𝑤 ∈ (V𝑛)★, the waveform for sequence

𝑣 ::𝑤 is drawn as 𝑣 :: 𝑤𝑛 𝑛 := 𝑤 𝑣 .

As a circuit with 𝑐 delay components has at most |V|𝑐 states, to fully evaluate the
behaviour of a circuit it suffices to check every waveform of length |V|𝑐 + 1. This is
because even if such a waveform causes all |V|𝑐 states to occur, the final element must
produce a previously visited state, as there are no other states that could arise.

Corollary 5.37. Given a circuit in Mealy form
𝑓𝑠

𝑛𝑚

𝑥
and input sequence

𝑣 ∈ (V𝑚)★ of length |V|𝑐 + 1, there exists a state 𝑟 ∈ V𝑥 , an input sequence
𝑢 ∈ (V𝑚)★ and output sequences 𝑤, 𝑧 ∈ (V𝑛)★ such that applying Corollary 5.32
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yields the following reduction pattern:

𝑓𝑠
𝑣

∗
⇝

𝑓𝑟
𝑢 𝑤

∗
⇝

𝑓𝑟
𝑧 𝑤

This means that every possible behaviour of a circuit can be evaluated using a
finite number of sequences. This can be used to define our notion of observational
equivalence for digital circuits.

Definition 5.38 (Observational equivalence of circuits). We say that two sequen-
tial circuits 𝑓𝑚 𝑛 and 𝑔𝑚 𝑛 with no more than 𝑐 delays are said to be
observationally equivalent under I, written 𝑓 ∼I 𝑔 if applying produc-
tivity produces the same output waveforms for all input waveforms 𝑣 ∈ (V𝑚)★ of
length |V𝑐 | + 1.

Observational equivalence is our semantic relation for operational semantics, which
relates two circuits based on their execution. To ensure it is suitable, it must be sound
and complete with respect to the denotational semantics.

Theorem 5.39. Two sequential circuits 𝑓𝑚 𝑛 and 𝑔𝑚 𝑛 are observation-

ally equivalent 𝑓𝑚 𝑛 ∼I 𝑔𝑚 𝑛 if and only if
r

𝑓𝑚 𝑛

zS

I
=

r
𝑔𝑚 𝑛

zS

I
.

Proof. The (⇒) direction follows by Corollary 5.37, as every possible internal con-
figuration of the circuit will be tested. For (⇐), if

r
𝑓𝑚 𝑛

zS

I
=

r
𝑔𝑚 𝑛

zS

I
,

then this means
r

𝑓𝑚 𝑛

zS

I
(𝑣 :: 𝜎) =

r
𝑔𝑚 𝑛

zS

I
(𝑣 :: 𝜎) for any 𝜎, 𝜏 ∈

(V𝑚)𝜔 . By definition of J−KSI , we then have that
r

𝑓𝑣 𝑛𝑚

zS

I
(𝜎) =

r
𝑔𝑣 𝑛𝑚

zS

I
(𝜎). Since this holds for all sequences 𝑣 , it must hold for those

of length |V|𝑐 + 1, so the condition for observational equivalence is met.

To verify that this is the ‘best’ equivalence relation, we turn to a definition of
observational equivalence in terms of universal properties [Gor98]. Gordon states that
a relation is an adequate observational semantics if it only relates circuits that have
the same denotational semantics; observational equivalence is defined as the largest
adequate congruence.

Corollary 5.40. ∼I is the largest adequate congruence on SCircΣ.
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Proof. For ∼I to be a congruence it must be preserved by composition, tensor and
trace, and for it to be the largest there must be no denotationally equal circuit it
does not relate. These, along with adequacy, all follow by Theorem 5.39.

This makes ∼I a suitable notion of observational equivalence for sequential circuits.

Definition 5.41. Let SCircΣ/∼I be defined as SCircΣ/∼I .

Corollary 5.42. There is an isomorphism SCircΣ/≈I � SCircΣ/∼I .

The results of the previous section give us an upper bound on the length of wave-
forms required to establish observational equivalence, so we have a terminating strategy
for comparing digital circuits. Unfortunately, this is still an exponential upper bound,
so it is infeasible to check for the equivalence of circuits with more than a few delay
components. Nevertheless, the operational semantics gives us a straightforward way
to evaluate circuits while respecting their internal structure, unlocking more insight as
to why circuits are behaving the way they are.

Moreover, while it may be infeasible to check every single possible input to a circuit,
it is often the case that one knows a particular input is fixed. By precomposing the
circuit with appropriate infinite waveforms to represent the fixed inputs, insight and
potential optimisations may be gleaned; this is known as partial evaluation, which will
be examined more in Chapter 7.

5.4 Operational semantics for generalised circuits

When dealing with arbitrary-width wires, the only part of the operational semantics
that does not completely generalise in the obvious way are the value rules.

Lemma 5.43 (Generalised value rules). The following generalised value rules are
sound:

𝑣
𝑛
𝑛

(F)
⇝

𝑣 𝑛

𝑛𝑣

𝑣

𝑤
𝑛
(J)
⇝ 𝑣 ⊔𝑤 𝑛

𝑣
(E)
⇝ 𝑣 𝑝

(PI )⇝ J𝑝K(𝑣)

𝑣 𝑚 ...𝑚
(Split)
⇝

𝑣 (0)
...𝑚

𝑣 (𝑚 − 1)

𝑣0

𝑣𝑚−1

𝑚...𝑚
(Comb)
⇝ 𝑣0 . . . 𝑣𝑚−1
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Lemma 5.44. Applying the generalised value rules is confluent.

Proof. There are no overlaps between the rules.

Lemma 5.45. l For a generalised combinational circuit 𝑓𝑚 𝑛 and 𝑣 ∈ V𝑚, there
exists a word 𝑤 ∈ V𝑛 such that applying the value rules exhaustively to 𝑓𝑣

terminates at 𝑤 .

With these rules, the inputs to a generalised circuit can be processed.

Corollary 5.46. For generalised circuit
𝑓𝑠

𝑛

𝑥

𝑣𝑚
there exist 𝑡 ∈ V𝑥 and

𝑤 ∈ V𝑛 such that
𝑓𝑠

𝑛

𝑥

𝑣𝑚

∗
⇝

𝑓
𝑛

𝑥

𝑚
𝑡

𝑤

by applying (Str)

once followed by the generalised value rules exhaustively.

Corollary 5.47 (Generalised productivity). For sequential circuit 𝑓𝑚 𝑛 and
inputs 𝑣 ∈ V𝑚, there exists 𝑤 ∈ V𝑛 such that 𝑓𝑣 𝑛𝑚

∗
⇝ 𝑔 𝑤 𝑛𝑚 by

applying Mealy, IF and Str once successively followed by the value rules exhaustively.

Since register components can now hold words rather than just values, for observa-
tional equivalence we must consider longer input waveforms.

Definition 5.48 (Register width). Given a generalised sequential circuit 𝑓𝑚 𝑛 ,
let 𝑐𝑛 be the number of 𝑛-width delay components 𝑛𝑛 ; the register width of

𝑓𝑚 𝑛 is computed as Σ𝑛∈N 𝑐𝑛 · 𝑛.

Definition 5.49. We say that two generalised sequential circuits 𝑓𝑚 𝑛 and
𝑔𝑚 𝑛 with register width at most 𝑐 are said to be observationally equivalent

under I, written 𝑓 ∼+I 𝑔 if applying productivity produces the same
output waveforms for all input waveforms 𝑣 ∈ (V𝑚)★ of length |V𝑐 | + 1.

The observational equivalence results from the previous section then generalise
nicely to the multicoloured case.

Theorem 5.50. Given two sequential circuits 𝑓𝑚 𝑛 and 𝑔𝑚 𝑛 , we have
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that 𝑓𝑚 𝑛 ∼+I 𝑔𝑚 𝑛 if and only if
r

𝑓𝑚 𝑛

zS

I
=

r
𝑔𝑚 𝑛

zS

I
.

Corollary 5.51. ∼+I is the largest adequate congruence on SCirc+Σ.

Definition 5.52. Let SCirc+
Σ/∼+I

be defined as SCirc+Σ/∼+I .

Corollary 5.53. There is an isomorphism SCirc+
Σ/≈+I

� SCirc+
Σ/∼+I

.
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Algebraic semantics

The operational semantics and notion of observational equivalence means that the
behaviour of two circuits can be compared by checking whether every input produces
the same output for both circuits. But this is somewhat of a nuclear option; rather than
using what we know about the structure of a circuit’s components, we just blast away
exhaustively trying all the inputs to find a contradiction.

A more elegant method of reasoning is by defining a set of equations between
subcircuits and quotienting SCircΣ by these equations. A proof of equivalence between
two circuits is then presented using algebraic reasoning: applying equations to translate
one circuit into the other. This is often far more efficient than having test every input,
and is known formally as an algebraic semantics.

Example 6.1. For the last time we return to the language of arithmetical expres-
sions from Example 4.1. An algebraic semantics for this language can be defined
using a set of equations: the familiar equations of associativity, commutativity,
unitality, annihiliation and distributivity, along with equations for performing arith-
metic.

𝑎𝑑𝑑 (𝑎𝑑𝑑 𝑒1 𝑒2) 𝑒3 = 𝑎𝑑𝑑 𝑒1 (𝑎𝑑𝑑 𝑒2 𝑒3) 𝑚𝑢𝑙 (𝑚𝑢𝑙 𝑒1 𝑒2) 𝑒3 =𝑚𝑢𝑙 𝑒1 (𝑚𝑢𝑙 𝑒2 𝑒3)
𝑎𝑑𝑑 𝑒1 𝑒2 = 𝑎𝑑𝑑 𝑒2 𝑒1 𝑚𝑢𝑙 𝑒1 𝑒2 =𝑚𝑢𝑙 𝑒2 𝑒1

𝑎𝑑𝑑 𝑒1 0 = 𝑒1 𝑚𝑢𝑙 𝑒1 1 = 𝑒1 𝑚𝑢𝑙 𝑒1 0 = 0
𝑚𝑢𝑙 𝑒1 (𝑎𝑑𝑑 𝑒2 𝑒3) = 𝑎𝑑𝑑 (𝑚𝑢𝑙 𝑒1 𝑒2) (𝑚𝑢𝑙 𝑒1 𝑒3)
𝑎𝑑𝑑 𝑛1 𝑛2 = 𝑛1 + 𝑛2 𝑎𝑑𝑑 𝑛1 𝑛2 = 𝑛1 · 𝑛2
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If everything is specified concretely as values then one could easily just use the last
two equations to compare two expressions by reducing two expressions to values
as in the operational semantics. The power of the algebraic semantics comes from
the fact we can reason abstractly with expressions containing blackboxes. Take the
following example, containing some arbitrary component 𝑒.

𝑚𝑢𝑙 (𝑎𝑑𝑑 𝑒 (𝑚𝑢𝑙 𝑒 3)) 2 =𝑚𝑢𝑙 (𝑎𝑑𝑑 (𝑚𝑢𝑙 𝑒 1) (𝑚𝑢𝑙 𝑒 3)) 2
=𝑚𝑢𝑙 (𝑚𝑢𝑙 𝑒 𝑎𝑑𝑑 (1 3)) 2
=𝑚𝑢𝑙 (𝑚𝑢𝑙 𝑒 4) 2
=𝑚𝑢𝑙 𝑒 (𝑚𝑢𝑙 4 2)
=𝑚𝑢𝑙 𝑒 8
=𝑚𝑢𝑙 8 𝑒

Despite not specifying the structure of 𝑒, we have shown how the expression is
equal to a slightly simpler one. This process creates new general equations which
can be used as ‘shortcuts’ in future reasoning, potentially saving many steps.

As with the operational semantics, we are especially interested in defining a sound
and complete algebraic semantics with respect to the denotational semantics. That is to
say, for each equation 𝑓 = 𝑔 then

r
𝑓

zS

I
=

r
𝑔

zS

I
, and there must

be enough equations such that if
r

𝑓

zS

I
=

r
𝑔

zS

I
then there exists a series of

equations identifying 𝑓 and 𝑔 .

Remark 6.2. An ‘equational theory’ for sequential circuits was one of the first
things presented in the previous work [GJ16; GJL17a]. In that paper, equations that
‘seemed right’ were used to quotient the syntax, with the ultimate aim of showing
that the resulting category was Cartesian. This was done quite informally, and was
made more confusing as the categories of circuits were subsequently quotiented
by some notion of ‘extensional equivalence’, an attempt to rectify the fact that
the equations only dealt with closed circuits. Soundness and completeness of the
equational theory was not considered because there was nothing to compare it
against.

In essence, the previous work was almost ‘the wrong way round’: equations
were defined and semantics drawn from them. In the more recent version of the
work [GKS24, Sec. 5], which forms the basis for this chapter, the equations are
derived from the denotational semantics. Not only does this give us a formal way
of verifying that these equations are sound, it sets the backdrop against which we
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= (JoinUnitL) = (JoinUnitR)

= (BD) 𝑓 = 𝑓 † (IF)

Figure 6.1: Set of Mealy equationsM.

can test if the algebraic semantics are sufficient: are any two denotationally equal
circuits identified by equations?

When defining such an equational theory, there may be several different sound and
complete formulations. Ideally, we want to stick to simple local equations that concern
the interactions of concrete generators as much as possible, but as we will see we will
sometimes have no choice but to define families of equations parameterised over some
arbitrary subcircuit.

6.1 Normalising circuits

How does one start when trying to define a complete set of equations for some frame-
work? Usually the strategy is to define enough equations to bring any term to some sort
of (pseudo-)normal form; the theory is then complete if terms with the same semantics
have the same normal form.

We have already seen something that looks a bit like a normal form: theMealy form
from the previous section. This is by no means a true normal form, as there are many
different Mealy forms that represent the same behaviour. Nevertheless, it is a useful
starting point so we will need equations to bring circuits to Mealy form in our theory.

Instead of just turning the Mealy reduction rules into equations, we will show how
Mealy form can be derived using smaller equations.

Definition 6.3. The set M of Mealy equations in Figure 6.1 are sound.

Proof. The first two rules hold as the join is a monoid in the stream semantics.
The (BD) holds because the semantics of the delay component are to output a ⊥
value first and then the (delayed) inputs: as the semantics of the component
are to always produce ⊥, then it does not make a difference how delayed it is. The
final equation is the instant feedback rule, which is sound by Proposition 5.19.
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Proposition 6.4. Given a sequential circuit 𝑓𝑚 𝑛 , there exists a combinational

circuit 𝑔𝑥 𝑥
𝑚 𝑛

and values 𝑠 ∈ V𝑥 such that 𝑓 = 𝑔𝑠 in SCircΣ/M.

Proof. Any circuit can be assembled into global trace-delay form solely using the
axioms of STMCs. From this, a circuit in pre-Mealy form can be obtained by
translating delays and values into registers using the following equations:

(JoinUnitL)
= 𝑣

(JoinUnitR)
=

𝑣 (BD)
=

𝑣

Subsequently a circuit in Mealy form can be obtained by applying the (IF) rule.

SCircΣ/M is a category in which all circuits are equal to at least one circuit in
Mealy form. In general, there will be many Mealy forms depending on the ordering
one picks for the delays and value; our task is to provide equations to map any two
denotationally equivalent circuits to the same Mealy form.

Even if the combinational cores of two Mealy forms have the same behaviour, they
may not have the same structure. To reduce the number of cores we have to consider,
we will first establish equations for translating any combinational circuit into some
canonical circuit. We already met a method for determining what this canonical circuit
is: the functional completeness map | |−| | from FuncI to SCircΣ.

Definition 6.5 (Normalised circuit). A sequential circuit 𝑓𝑚 𝑛 is normalised
if it is in the image of | |−| |.

As a shorthand, we will often abuse notation and write | |𝑓 | | := | |𝑓 | | . Recall
that even though | |−| | maps into SCircΣ, every circuit in its image has combinational
behaviour. This is quite an important distinction to make, so we will give it a proper
name.

Definition 6.6 (Essentially combinational). A sequential circuit is essentially com-

binational if it is in the form
𝑓

𝑣 .

Such circuits are sequential circuits that exhibit combinational behaviour: any value
components are only used to introduce constants which do not alter over time.

As the normalised version of a given circuit is interpretation-dependent, there is no
standard set of equations for normalising a circuit. Instead, these must be specified on
an interpretation-by-interpretation basis.
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Definition 6.7 (Normalising equations). For a complete interpretation (I, | |−| |), a
set of equations NI is normalising if any essentially combinational circuit 𝑓𝑚 𝑛

is equal to a circuit in the image of | |−| | by equations in NI .

Definition 6.8 (Normalisable interpretation). A complete interpretation I is called
normalisable if there exists a set of normalising equations NI .

The normalising equations for a given interpretation can be used to translate a
combinational core into a circuit from which it is easy to read off a truth table.

Theorem 6.9. For every sequential circuit 𝑓𝑚 𝑛 in a normalisable complete
interpretation (I, | |−| |) over Σ, there exists essentially combinational | |𝑔| |𝑥 𝑥

𝑚 𝑛

and 𝑠 ∈ V𝑥 such that 𝑓𝑚 𝑛 = | |𝑔| |𝑠 in SCircΣ/M +NI .

Proof. By Proposition 6.4, 𝑓𝑚 𝑛 =
ℎ

𝑠 and by equations in NI ,

ℎ = | |𝑔| | .

6.2 Encoding equations

A circuit in Mealy form is a syntactic representation of a Mealy machine: the combina-
tional core is the Mealy function, and the registers are the initial state. It is important
to determine the states that the circuit might assume, as these determine whether or
not an equation is valid.

Definition 6.10 (States). Let 𝑓 : V𝑥+𝑚 → V𝑥+𝑛 be a monotone function and let
𝑠 ∈ V𝑥 be a state. Then the states of 𝑓 from 𝑠, denoted 𝑆 𝑓 ,𝑠 , is the smallest set
containing 𝑠 and closed under 𝑟 ↦→ 𝜋0(𝑓 (𝑟, 𝑣)) for any 𝑣 ∈ V𝑚.

Example 6.11. Consider the circuit ⊥
t

. The semantics of

the combinational core are clearly (𝑠, 𝑟 ) ↦→ (𝑠 ∨ 𝑟, 𝑠, 𝑠 ∨ 𝑟 ), where the first two
characters are the next state and the third is the output. The initial state is ⊥t, so
the subsequent states are (⊥∨t,⊥) = (t,⊥) and (t∨⊥, t) = (t, t). As (t∨t, t) = (t, t),
there are no more circuit states and the complete set is {(⊥, t), (t,⊥), (t, t)}.

Note that as the output of the circuit is computed as 𝑠 ∨ 𝑟 , for each circuit



6.2. Encoding eqations 118

state the output is t. This means that the circuit is denotationally equivalent to
t , but this circuit only has a single state t.

We need to encode the states of one circuit as another; we have already encountered
this notion using Mealy homomorphisms (Definition 4.55); functions between the state
sets that preserve transitions and outputs. While two ‘inverse’ homomorphisms may
not be isomorphisms, the round trip will always map to a state with the same behaviour.

Lemma 6.12. Given two Mealy homomorphisms ℎ : (𝑆, 𝑓 ) → (𝑇,𝑔) and
ℎ′ : (𝑇,𝑔) → (𝑆, 𝑓 ), any state 𝑠 ∈ 𝑆 and input 𝑎 ∈ 𝐴, 𝑓0(𝑠, 𝑎) = 𝑓0(ℎ′(ℎ(𝑠)), 𝑎).

Proof. Immediate as Mealy homomorphisms preserve outputs.

We will use Mealy homomorphisms as circuits to encode state sets; this means we
need to ensure the encoders and decoders are monotone.

Lemma 6.13. For partial orders 𝑆 and 𝑇 and monotone Mealy coalgebra (𝑆, 𝑓 )
and (𝑇,𝑔), any Mealy homomorphism ℎ : (𝑆, 𝑓 ) → (𝑇,𝑔) is monotone.

Proof. In a monotone Mealy coalgebra, the functions 𝑓 and 𝑔 are monotone, and
for ℎ to be a Mealy homomorphism, 𝑓1(𝑠) = 𝑔1(ℎ(𝑠)). For states 𝑠, 𝑟 ∈ 𝑆 we
have 𝑔1(ℎ(𝑠), 𝑎) = 𝑓1(𝑠, 𝑎) ≤ 𝑓1(𝑟, 𝑎) = 𝑔1(ℎ(𝑟 ), 𝑎). This means that the function
𝑠 ↦→ 𝑔1(ℎ(𝑠), 𝑎) is monotone; as 𝑔1 is monotone, ℎ must also be monotone.

For two circuits | |𝑓 | |𝑠
𝑛𝑚

𝑥
and | |𝑔| |𝑡

𝑛𝑚

𝑦

, the encoders and de-

coders will be homomorphisms (𝑆 𝑓 ,𝑠, 𝑓 ) → (𝑆𝑔,𝑡 , 𝑔) and (𝑆𝑔,𝑡 , 𝑔) → (𝑆 𝑓 ,𝑠, 𝑓 ). These are
homomorphisms on the subset of states that a circuit can assume, not the entire set
of words that can fit into the state. This means that encoding and decoding circuits
cannot be inserted arbitrarily but only in certain contexts.

Proposition 6.14 (Encoding equation). For a normalised circuit | |𝑓 | |𝑥 𝑥
𝑚 𝑦

and 𝑠 ∈ V𝑥 , let enc : 𝑆 𝑓 ,𝑠 → V𝑦 and dec : V𝑦 → 𝑆 𝑓 ,𝑠 be functions such that
dec ◦ enc : 𝑆 𝑓 ,𝑠 → 𝑆 𝑓 ,𝑠 is a Mealy homomorphism. Then the encoding equation
(Enc) in Figure 6.2 is sound, where encm and decm are monotone completions as
defined in Definition 4.90.
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| |𝑓 | |𝑠

𝑥
= | |𝑓 | |𝑠

𝑥

| |encm | | | |decm | | (Enc)

𝑣 𝑝 = J𝑝K(𝑣) (PI) 𝑣 =
𝑣

𝑣
(F)

𝑣

𝑤
= 𝑣 ⊔𝑤 (J)

𝑣 = (E) = (DF) = (BD)

= (FU) = (JA) 𝑝𝑣 =
𝑝𝑣

𝑝
(Str)

= (JC) = (JF)

Figure 6.2: SetH of equations for encoding circuit states

Proof. Let 𝑔 be defined as the map 𝑟 ↦→
t

| |𝑓 | |𝑟

𝑥

| |encm | | | |decm | |

|S

I

;

by Proposition 4.96 we know that 𝑔(𝑡) [𝑣] = 𝜋1(𝑓 (dec(enc(𝑡)), 𝑣)) and 𝑔(𝑡)𝑣 =

𝑔(𝜋0(𝑓 (dec(enc(𝑡)), 𝑣))). As dec ◦ enc is a Mealy homomorphism, for 𝑡 ∈ 𝑆 𝑓 ,𝑠 we
have that 𝑔(𝑡) [𝑣] = 𝜋1(𝑓 (𝑡), 𝑣) and that 𝑔(𝑡)𝑣 shares outputs and transitions with

𝑔(𝜋0(𝑓 (𝑡)), 𝑣). As | |𝑓 | |𝑠

𝑥

| |encm | | | |decm | | := 𝑔(𝑠) and 𝑠 ∈ 𝑆 𝑓 ,𝑠 , every

subsequent stream derivative will also be of the form 𝑔(𝑡) where 𝑡 ∈ 𝑆 𝑓 ,𝑠 , so the
equation is sound.

Remark 6.15. The encoding equation is an equation schema: this is required
because the width of a circuit state can be arbitrarily large, and each extra bit adds
a whole new set of Mealy homomorphisms to consider.

The encoding equation only inserts encoder circuits; to actually change the state
we need some more equations.

Lemma 6.16. The equations on the bottom four rows of Figure 6.2 are sound.

Proof. It is a straightforward exercise to compare the stream functions.

To show the final result we must prove some lemmas; first we show how we can
‘pump’ a value out of an infinite waveform.
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𝑣 := 𝑣 (JF)
=

𝑣 (F)
=

𝑣

𝑣

(DF)
=

𝑣

𝑣
:= 𝑣

𝑣

= 𝑣
𝑣

Figure 6.3: Proof of Lemma 6.17

Lemma 6.17. For 𝑣 ∈ V, 𝑣 = 𝑣
𝑣

using the encoding
equations.

Proof. The proof is straightforward and is illustrated in Figure 6.3.

The next lemma shows how the familiar ‘streaming’ rule from the operational
semantics can be derived equationally.

Lemma 6.18. For a combinational circuit 𝑓 , 𝑓𝑣 =
𝑓𝑣

𝑓

by the encoding equations.

Proof. This is by induction on the structure of 𝑓 . The case for the primitive
is immediate by (Str). For we have that

𝑣 (JF)
=

𝑣 (DF)
=

𝑣

The proof for is illustrated in Figure 6.4. The case for is trivial, and the

case for follows by (CU) and (BD). The cases for and follow by
axioms of STMCs. Since the underlying circuit is combinational, for the inductive
cases we just need to check composition and tensor, which are trivial.

We next show how the encoding equations can be used to translate combinational
circuits with inputs into values.
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𝑣

𝑤

(MA)
=

𝑣

𝑤

(MA)
=

𝑣

𝑤

(MC)
=

𝑣

𝑤
=

𝑣

𝑤 (MA)
=

𝑣

𝑤 (MA)
=

𝑣

𝑤 (MA)
=

𝑣

𝑤

Figure 6.4: Proof of Lemma 6.18 for the join case

Lemma 6.19. Let 𝑓𝑚 𝑛 be a combinational circuit such that
r

𝑓

zC

I
= 𝑔.

Then 𝑓𝑣 = 𝑔(𝑣) by the encoding equations.

Proof. For the same reasoning as Lemma 5.29, the (PI), (F), (J) and (E) equations
can be used to show that there exists 𝑤 ∈ V𝑛 such that 𝑓𝑚 𝑛 = 𝑤 .

Now we need to show that
r

𝑓𝑣

zS

I
=

q
𝑔(𝑣)

yS
I . By functoriality of

J−KSI ,
r

𝑓𝑣

zS

I
= J 𝑣 KSI #

r
𝑓

zS

I
. By Lemma 4.81 we know that

r
𝑓

zS

I
(𝜎) (𝑖) =

r
𝑓

zC

I
= 𝑔(𝜎) (𝑖) for all 𝜎 ∈ (V𝑚)𝜔 and 𝑖 ∈ N. Since

J 𝑣 KSI = 𝑣 ::⊥ ::⊥ :: . . ., we have that
r

𝑓𝑣

zS

I
= 𝑔(𝑣) ::⊥ ::⊥ :: . . ., which is

the interpretation of 𝑔(𝑣) . As the equations are sound they must preserve the
stream semantics, so 𝑤 = 𝑔(𝑣).

Finally, we use the above lemma to show how values can be applied to essentially
combinational circuits.

Lemma 6.20. Let 𝑓 : V𝑚 → V𝑛 be a monotone function such that | |𝑓 | | :=

𝑔
𝑣 . Then 𝑣

𝑤
𝑔 = 𝑓 (𝑤) .
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Proof. Let ℎ :=
r

𝑔
zC

I
; using Lemma 6.19, we have that 𝑣

𝑤
𝑔 =

ℎ(𝑣,𝑤) . So we must show that 𝑓 (𝑤) = ℎ(𝑣,𝑤).

𝑓 (𝑤) =
r
| |𝑓 | |

zS

I
(𝑤 :: ⊥𝜔 ) (0) Definition 4.87

:=
t

𝑔
𝑣

|S

I

(𝑤 :: ⊥𝜔 ) (0)

=

r
𝑔

zS

I
(𝑣𝜔 ,𝑤 :: ⊥𝜔 ) (0)

=

r
𝑔

zC

I
(𝑣,𝑤) Lemma 4.81

= ℎ(𝑣,𝑤)

This completes the proof.

With these lemmas in our toolkit, we can now show that the encoding equations
allow us to translate a circuit into one with an encoded state, and therefore translate
between the state sets of any two denotationally equivalent circuits.

Theorem 6.21. For a circuit | |𝑓 | |𝑥 𝑥
𝑚 𝑦 and initial state 𝑠 ∈ V𝑥 , the equa-

tion | |𝑓 | |𝑠 = | |𝑓 | |encm(𝑠) | |encm | || |decm | | is derivable by

the equations in H.

Proof. We have that | |𝑓 | |𝑠

𝑥
= | |𝑓 | |𝑠

𝑥

| |encm | | | |decm | | by the

(Enc) equation; we need to ‘push’ the encoder | |encm | | through the state.
Although the encoder is sequential, by the definition of | |−| |, it must be of the form
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𝑔
𝑣 by definition of complete interpretations. This means we have

| |encm | |𝑠 :=
𝑔

𝑣

𝑠

=
𝑔

𝑣

𝑠
𝑣 Lemma 6.17

=
𝑔

𝑣

𝑔
𝑠

𝑣

Lemma 6.18

=
𝑔

𝑣

encm(𝑠)
Lemma 6.20

:=
| |encm | |

encm(𝑠)

:= | |encm | | encm(𝑠)

The proof is completed by sliding the encoder around the trace.

With the right encoders, the initial state of a circuit can be translated into a different
word, giving us a new circuit in Mealy form. As all the involved components are
essentially combinational, the circuit can be normalised again to produce a circuit in
normalised Mealy form.

6.3 Restriction equations

We can now map the state set of one circuit to another using encodings. Does this mean
that the two circuits will now be structurally equal? Unfortunately not: all it means is
that the circuits agree on the set of circuit states.
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| |𝑓 | |𝑠 = | |𝑔| |𝑠 (Res) where 𝑓 | (𝑆 𝑓 ,𝑠 × V𝑚) = 𝑔| (𝑆𝑔,𝑠 × V𝑚)

Figure 6.5: The schema of restriction equations

Example 6.22. Consider the following two circuits in SCircΣB :

f

t

f

t

Both circuits have circuit states {tf}, but their combinational cores do not have
the same semantics. They only act the same because they receive certain inputs.

The final family of equations required is one for mapping between combinational
circuits that agree on the subset of possible inputs they actually receive.

Notation 6.23. Given sets 𝐴, 𝐵 and 𝐶 where 𝐶 ⊆ 𝐴 and a function 𝑓 : 𝐴→ 𝐵,
the restriction of 𝑓 to 𝐶 is a function 𝑓 |𝐶 : 𝐶 → 𝐵, defined as 𝑓 |𝐶 (𝑐) := 𝑓 (𝑐).

Definition 6.24 (Restriction equations). Let the schema of restriction equations
be defined as in Figure 6.5.

Example 6.25. By a restriction equation, the circuits in Example 6.22 are now
equal, as the cores produce equal outputs for inputs where the state is tf.

6.4 Completeness of the algebraic semantics

It is now possible to collect all the equations together and define a sound and complete
algebraic theory of sequential digital circuits.

Definition 6.26. For a complete interpretation I, let EI be M +NI +H + (Res),
and let SCircΣ/EI be defined as SCircΣ/EI .

For this to be a complete set, we must be able to translate a circuit 𝑓𝑚 𝑛 into
another circuit 𝑔𝑚 𝑛 with the same behaviour by only using these equations.
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Theorem 6.27. For a complete interpretation I, 𝑓𝑚 𝑛 = 𝑔𝑚 𝑛 in

SCircΣ/EI if and only if
r

𝑓

zS

I
=

r
𝑔

zS

I
.

Proof. All the equations are sound, so we only need to consider the (⇐) direction.
Using Theorem 6.9, the circuits 𝑓 and 𝑔 can be brought to Mealy

form, so we have that
s

| |𝑓 | |𝑠

{S

I
=

s

| |𝑔| |𝑡

{S

I
. This induces

Mealy machines (𝑆
𝑓 ,𝑠
, 𝑓 ) and (𝑆𝑔,𝑡 , 𝑔). As their stream functions are equal, there

are Mealy homomorphisms 𝜙 : 𝑆
𝑓 ,𝑠
→ 𝑆𝑔,𝑡 and 𝜓 : 𝑆𝑔,𝑡 → 𝑆

𝑓 ,𝑠
and subsequently the

composite of these homomorphisms is also a Mealy homomorphism; these will act
as a decoder-encoder pair.

Using the encoding equation, we have by Theorem 6.21 that

| |𝑓 | |𝑠 = | |𝑓 | |𝜙 (𝑠) | |𝜙 | || |𝜓 | | .

The circuit | |𝑓 | | | |𝜙 | || |𝜓 | | is a composition of normalised circuits, so it is

essentially combinational; when restricted to the set 𝑆𝑔,𝑡 its truth table is the same
as that of | |𝑔 | | , as the encoder-decoder pair were defined precisely as the
Mealy homomorphisms that translate between the two Mealy machines. Using
the normalisation equations again, the encoded circuit can be brought into nor-
malised Mealy form. Finally, the restriction equations can be used to translate

from | |𝑓 | |𝜙 (𝑠) | |𝜙 | || |𝜓 | | into
s

| |𝑔| |𝑡

{S

I
.

As always, the soundness and completeness of the algebraic semantics means we
can establish another isomorphism of PROPs.

Corollary 6.28. SCircΣ/≈I � SCircΣ/EI .

One might wonder how this improves on the operational approach, as the normal
form is quite complicated. The beauty of the algebraic semantics is that equations can
be proven as lemmas and used in the future as shortcuts; in time, the algebraicist will
build up a repertoire of equations and use them to bend circuits to their will.
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= (Exp) 𝑣 =

𝑣

𝑣
(RF)

𝑣 = ⊥ ∧ 𝑣 (RA) 𝑣 = ⊥ ∨ 𝑣 (RO)

𝑣 = ¬𝑣 (RN) 𝑣 =
𝑣

𝑣
(F) = (BF)

= (BJA) = (BJO) = (BA)

= (DM1) = (DM2) = (BO)

Figure 6.6a: First part of the set of explosion equations X

6.5 Algebraic semantics for Belnap logic

For a sound and complete equational theory, equations are required to bring any
essentially combinational circuit into a canonical form. We will now demonstrate this
for the Belnap interpretation; recall from Section 4.5 that the canonical form for Belnap
circuits is a circuit that ‘explodes’ its inputs into circuits for the ‘falsy’ and ‘truthy’
components of the output, before joining these together. The first equations we will
define translate any essentially combinational circuit into such an exploded circuit.

Definition 6.29 (Explosion equations). Let the set of explosion equations X be
defined as the equations listed in Figures 6.6a and 6.6b.

Lemma 6.30. The explosion equations are sound.

Proof. By checking all the inputs.

Most of the equations inX are well-known; the only interesting one is (Exp), which
says that we can always ‘explode’ a wire and join it back together. To translate a
circuit into exploded form, we use this equation to introduce an ‘empty explosion’, then
propagate the original components across with the other equations. The first obstacle
to this is the forks at the left of the explosion.
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Lemma 6.31. For any essentially combinational Belnap circuit 𝑓𝑚 𝑛 , the equa-

tion 𝑓 =
𝑓

𝑓
in SCircΣB/X .

Proof. This follows for the combinational generators by applying (JF), (BF), (AF),
(OF), (NF), and is immediate for the fork. The infinite register 𝑣 is also
a base case and is covered by (RF). The inductive cases are trivial.

Once the circuit is past the opening forks, the remaining equations are used to push
them across the translators.

Proposition 6.32. Given an essentially combinational Belnap circuit 𝑓𝑚 1 ,
there exist combinational Belnap circuits 𝑓0𝑚

𝑚
1

1 and 𝑓1𝑚
𝑚

1
1 containing no

or generators, such that

𝑓𝑚 1 = 𝑚

𝑓0

𝑓1

1
t

f

.

Proof. First we consider the base cases. If 𝑓 is the identity, then it can
be transformed into the desired form with (Exp). Since 𝑓 has codomain
1 it cannot be a symmetry. For the other generators and the infinite register,
(Exp) can be applied to the output wire to create the exploded ‘skeleton’, followed
by using Lemma 6.31 to copy the components into four. The four copies can
be pushed through the translators using (JF), (BJA), (BJO), (BF), (BO) (AC),
(OC), (AOD), (OAD), (RA), (RO), (RN), (DM1), (DM2), (BN), (BA), and
(BO). As propagating the flips the translators by using (DM1) and (DM2),
(FC) must be used to restore the correct order, and (DNE) is used to eliminate
additional gates. Any infinite registers containing ⊥ can be converted to

components using (Bot), and other registers can be combined using (RF).
For the composition inductive case, we have two exploded circuits and we need

to push the first inside the second. Using Lemma 6.31, the first circuit can be
propagated across the forks at the start of the second, so each of the four translators
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= (NF) = (AF) = (OF)

= (DNE) = (FA) = (JF) = (FC)

= (AI) = (OI) = (DF) = (BN)

= (AOD) = (OAD)

= (AC) = (OC)

Figure 6.6b: Second part of the set of explosion equations X

has as input a copy of the first circuit. Using the same strategy as for the base
case the components of the circuit can then be propagated across the translators.
For tensor, the circuits can be interleaved using axioms of STMCs.

This already looks similar to a circuit in the image of | |−| |B, but the two subcircuits
must also be translated into truthy or falsy disjunctive normal form.

Definition 6.33 (Normal form equations). Let the set of normal form equations
F be defined as the equations listed in Figure 6.7.

Lemma 6.34. The equations in F are sound.

Proof. By checking all the inputs.

We will now show that these equations suffice to translate the subcircuits in the
exploded circuit into falsy or truthy disjunctive normal form.

Lemma 6.35. Given a Belnap circuit
𝑓

t
𝑚

𝑛
containing no ,

or components, there exists a circuit 𝑔𝑚𝑛 𝑝 containing only

identity and elimination constructs, and a circuit ℎ𝑝 𝑛 defined as the ten-

sor of 𝑛 truthy conjunctions, such that
𝑓

t
𝑚

𝑛
= Δ𝑚,𝑛 ℎ𝑔

in SCircΣB/F .
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= (AA) = (OA)

= (AOD) = (OAD)

= (AC) = (OC) = (AI)

= (OI) = (AF) = (AF)

= (FC) = (FA) = (FU) = (BF)

t = (AndId) f = (OrId) ⊥ = (Bot)

= (BOB) = (BAB)

Figure 6.7: Set of normal form equations F .

Proof. Repeatedly applying (AF) to 𝑓 propagates the components
in the circuit as far to the right as possible, so all the fork and eliminate constructs
are in the left half of the term. Using (FC), (FA) to rearrange the forks, and (FU)
to introduce forks where necessary, we can manipulate these forks such that each
of the 𝑚 inputs has a connection to each of the 𝑛 outputs. Similarly, we can use
(AndId) to introduce infinite registers where appropriate, so we have a circuit of
the form below.

Δ𝑚,𝑛𝑚

ℎ0

ℎ1

ℎ𝑛−1

...

...

1
1

1

t
...

t
t

𝑔...

The subcircuits may not be truthy conjunctions yet, as the input wires may be used
more than once. Using the (AI), (FC), (FA), (AA) and (AC), each subcircuit can
be translated into a truthy conjunction.

The proof for the falsy circuit is almost exactly the same.
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Lemma 6.36. Given a Belnap circuit
𝑓

t
𝑚

𝑛
containing no ,

or components, there exists a circuit 𝑔𝑚𝑛 𝑝 containing only

identity and elimination constructs, and a circuit ℎ𝑝 𝑛 defined as the tensor of
𝑛 falsy conjunctions, such that 𝑓 = Δ𝑚,𝑛 ℎ𝑔 in SCircΣB/F .

Proof. As Lemma 6.35, but with the equations on components.

Truthy and falsy conjunctions can then be used to create truthy and falsy conjunctive
normal forms.

Proposition 6.37. Given a Belnap circuit

𝑚

𝑓0

𝑓1

1
t

f

in which 𝑓0 and 𝑓1 contain no or generators, there exists

𝑚

ℎ0

ℎ1

1

Δ𝑚,𝑛

Δ𝑚,𝑛

𝑔0

𝑔1

in which 𝑔0 and 𝑔1 contain only identity and elimination components,
ℎ0 is in falsy conjunctive normal form and ℎ1 is in truthy conjunctive normal

form, such that

𝑓0

𝑓1

t

f

=

ℎ0

ℎ1

Δ𝑚,𝑛

Δ𝑚,𝑛

𝑔0

𝑔1

in SCircΣB/F .
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Proof. First, all the components need to be propagated to the far right

of the 𝑓0 circuit using (OAD), and all the components need to be

propagated to the far right of the 𝑓1 circuit using (AOD). This means that
the circuits are split into two halves, each containing one type of gate.

For these circuits to be in truthy or falsy disjunctive normal form, they need to
contain exactly one component. If there is not already such a component

inside the 𝑓0 or 𝑓1 subcircuits, one can be inserted using the (BOB)
equation for the former and the (BAB) equation for the latter. If there are multiple
unit components, these can be propagated through the circuit using (OA), (OAD),
(AA), and (AOD), and combined into one by using (BA) or (BO).

Now we have circuits that have the ‘root’ of disjunctive normal forms, but
the ‘leaves’ are not conjunctions. This is remedied by applying Lemma 6.35 and
Lemma 6.36 to the left half of each circuit.

Putting this all together gives us the desired canonical form theorem.

Theorem 6.38. Given an essentially combinational Belnap circuit 𝑓 , there
exists a circuit 𝑔 in the image of | |−| |B such that 𝑓 = 𝑔 in
CCircΣB/X + F .

Proof. This follows by applying Proposition 6.32 followed by Proposition 6.37.

This shows that the equations in this section can translate any essentially com-
binational Belnap circuit into a circuit in the image of the functional completeness
map.

6.6 Algebraic semantics for generalised circuits

When it comes to lifting the algebraic semantics to the generalised case, all we need to
do is to extend some of the equations to arbitrary width wires, and to add equations to
handle the bundlers.

Definition 6.39. Let the set M+ be defined as M but with equations (MUL),
(MUR), and (BD) for wires of each with 𝑛 ∈ N+.

Since the set of normalising equations NI is determined by the interpretation, we
do not need to do anything there. The encoding equations need to be extended to act
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on all wire widths, and we need to be able to handle encoders that contain bundlers.

Definition 6.40. Let the set H+ be defined as H but with all equations adjusted
to operate on wires of all widths 𝑛 ∈ N+, and with the addition of equations

𝑣 𝑚 ...𝑚 =

𝑣 (0)
...𝑚

𝑣 (𝑚 − 1)
(Split)

𝑣0

𝑣𝑚−1

𝑚...𝑚 = 𝑣0 . . . 𝑣𝑚−1 (Comb)

on bundlers.

Finally the restriction schema also needs to operate on arbitrary-width wires.

Definition 6.41. Let (Res+) be defined as (Res) but extended to operate on wires
of widths 𝑛 ∈ N+.

Putting this all together gives us a set of equations for generalised circuits.

Definition 6.42. For a generalised interpretation I+, let E+I := M+ +N +I +H
+ +

(Res+), and let SCirc+
Σ/E+I

be defined as SCirc+Σ/E+I .

This set of equations is sound and complete.

Theorem 6.43. For a functionally complete generalised interpretation I,
𝑓𝑚 𝑛 = 𝑔𝑚 𝑛 in SCirc+

Σ/E+I
if and only if

r
𝑓

zS+

I
=

r
𝑔

zS+

I
.

Subsequently we obtain another isomorphism of categories.

Corollary 6.44. SCirc+
Σ/≈+I

� SCirc+
Σ/E+I

.



Chapter 7

Potential applications

So far, we have been concerned largely with theoretical concepts; we have shown how
the categorical framework of sequential digital circuits is rigorous enough to handle
composing circuits in sequence, parallel or with the trace without causing any of the
three semantic models to become degenerate. Unfortunately, this is not enough for
people in industry, who are more concerned with the practical benefits of the framework:
what can we do with it that cannot already be done?

Circuit design is already a very well-studied area and existing technologies are
incredibly successful. Our framework is therefore not meant to replace the existing tech-
nologies, but to complement them by highlighting different perspectives on reasoning
with sequential digital circuits. While the ideas provided in this section are certainly
not industry-grade applications, they are intended to demonstrate the potential of what
the compositional theory can bring to the table.

7.1 Tidying up

When building a circuit, it is often desirable to reduce the number of wires and compo-
nents used; this reduces both the physical size of the circuit and its power consumption.
We can use partial evaluation to transform a circuit into a more minimal form.

Definition 7.1 (Tidying rules). Let the set of tidying rules be defined as the rules
in Figure 7.1.

Most of the tidying rules are self-explanatory; the final rule is necessary in order to
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𝑝 ⇝ 𝑣 ⇝ 𝑓𝑠 ⇝ 𝑓𝑠

⇝ ⇝ ⇝

⇝ ⇝ ⇝

Figure 7.1: Rules for tidying up circuits in Mealy form

deal with traced circuits with no outputs. Since all circuits with no outputs have the
same behaviour, we are permitted to cut the trace to obtain a circuit we can apply more
tidying rules to. As non-delay-guarded feedback is already handled by the (IF) rule, we
only need to consider the delay-guarded case.

Proposition 7.2. Applying the tidying rules to a circuit in Mealy form is confluent
and terminating.

Proof. The tidying rules always decrease the size of the circuit. The only choice
is raised when there is a trace around a combinational circuit, but this does not
change the internal structure of the subcircuit, so rule applications are prevented.
Moreover, since all this rule does is cut a trace, it does not matter if this is performed
all in one go, or each feedback loop is cut one by one.

7.2 Partial evaluation

Partial evaluation [Jon96] is a paradigm used in software optimisation in which pro-
grams are ‘evaluated as much as possible’ while only some of the inputs are specified.
For example, it may be the case that a particular input to a program is fixed for long
periods of time; using partial evaluation, we can define a program specialised for this
input. This program might run significantly faster than the original.

There has been work into partial evaluation for hardware, such as constant propaga-
tion [SHM96; SM99] and unfolding [TM06]. However, this has been relatively informal,
and can be made rigorous using the categorical framework. In this section we will focus
on how we could extend the reduction-based operational semantics to define automatic
procedures for applying partial evaluation to circuits.



135 Chapter 7. Potential applications

𝑣 𝑔
⇝ J𝑔K (𝑣) 𝑣 ⇝

𝑣

𝑣

𝑤

𝑣
⇝ 𝑣 ⊔𝑤

Figure 7.2: Rules for infinite waveforms

7.2.1 Shortcut rules

It is often the case that we know that some of the inputs to a circuit are fixed. This can
be modelled by precomposing the relevant input with an infinite waveform 𝑣 .
We can propagate these waveforms across a circuit to see if we can reduce it to a circuit
specialised for these inputs.

To propagate waveforms across circuits we need to derive a version of the (PI) rule
for applying waveforms to primitives. These rules are illustrated in Figure 7.2.

This is not the only way we can partially evaluate with some inputs. In some
interpretations, it may be that we learn something about the output of a primitive with
only some of the inputs specified.

Example 7.3 (Belnap shortcuts). In the Belnap interpretation IB, if one applies a
false value to an AND gate then it will output false regardless of the other input.
Similarly, if one applies a true value to an OR gate it will output true. Conversely,
if one applies a true value to an AND gate or a false value to an OR gate, it will
act as the identity on the other input.

These ‘shortcuts’ can also be implemented as rules, as illustrated in Figure 7.3. Note
that here the value that ‘triggers’ the shortcut must be contained within an infinite
waveform; if we applied the rule with just an instantaneous value, this value would
produce ⊥ on ticks after the first and the rule would be unsound.

Example 7.4 (Control switches). Recall that a multiplexer is a circuit component

constructed as := . The first input is a control which

specifies which of the two other input signals is produced as the output signal. It
is often the case that these control signals will be fixed for long periods of time;
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f ⇝ f t ⇝ t

f ⇝ f t ⇝ t

t ⇝ f ⇝

t ⇝ f ⇝

Figure 7.3: Belnap shortcut rules for waveforms

perhaps they specify some sort of global circuit configuration.

Consider the circuit
𝑔

𝑓 , in which the control signal to the multi-

plexer determines which of two subcircuits will become the output. We will assume
that the control signal is held at false, and reduce accordingly by instantiating the
rule in Figure 7.2 detailing the interaction of gates and waveforms to the NOT case.

𝑔

𝑓

f

:=
𝑔

𝑓

f

⇝

𝑔

𝑓

f

f

⇝

𝑔

𝑓

t

f

⇝

𝑔

𝑓

f

⇝
𝑔

𝑓
⇝

𝑓
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𝑓

f
𝑣

⇝ f
𝑓

t
𝑣

⇝ t
𝑓

t
𝑣

⇝ 𝑓𝑣

𝑓

f
𝑣

⇝ 𝑓𝑣
𝑓

f
𝑣

⇝ f
𝑓

t
𝑣

⇝ t

𝑓

t
𝑣

⇝ 𝑓𝑣
𝑓

f
𝑣

⇝ 𝑓𝑣

Figure 7.4: Examples of ‘instantaneous’ shortcut rules

7.2.2 Shortcuts after streaming

The rules in the previous sections are intended for use on circuits before we even
apply values to them. However, there is still potential for partial evaluation when we
consider the outputs of a circuit one step at a time. To do this, we can apply variants
of the shortcut rules after performing streaming for some inputs. These variants are
illustrated in Figure 7.4.

Example 7.5 (Blocking boxes). Consider the circuit
𝑓

, which con-

tains a ‘blackbox’ combinational circuit 𝑓 with unknown behaviour.
Even though we cannot directly reduce the blackbox, if we set the first input

to false and use the shortcut rule above, we can still produce an output value.

𝑓

f
𝑤

⇝ 𝑓

f
𝑤

𝑓

⇝
f

𝑓

As well as removing redundant blackboxes, judicious use of shortcut reductions can
dramatically reduce the reductions needed to get the outputs of a circuit.

7.2.3 Protocols

Sometimes we may not know the exact inputs to a circuit, but know that they make
up a fixed subset of all possible inputs, or they follow some sort of protocol. We can
implement this in our reduction framework with uncertain values which we either
know nothing about or know can only take some specified values.
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Definition 7.6. Let SCircPΣ be the result of extending SCircΣ with value generators
for each word 𝑣? ∈ V★.

The additional value generators indicate that they could produce one of multiple
possible values. When a circuit contains uncertain values 𝑣0? , 𝑣1? , . . . 𝑣𝑛−1? ,

where the maximum length of a given 𝑣𝑖 is 𝑘 , there are 𝑘 possible value assignments.
For a given assignment 𝑖 < 𝑘 , each value will produce a concrete value defined as 𝑣𝑖 ( 𝑗)
if |𝑣𝑖 | > 𝑗 or ⊥ otherwise.

To avoid confusion with our syntax sugar for arbitrary-width values, we will always
end uncertain value lists with ?. When writing out specific uncertain words, we delimit
the elements with vertical bars like f |t to allude to the fact that this value is either the
first or the second element.

Example 7.7. If a circuit contains uncertain values f |t and t|f in a circuit,
then there are two universes to consider, one where the values output ft and one
where they output tf. If we add in another uncertain value with three possible
values, t|f |⊤ , we now have three possible universes, in which the values output
ftt, tff, and ⊥⊥⊤ respectively.

To reason with uncertain values in the reductional framework we need to add rules
for processing them. Once again it is useful to have versions for both waveforms and
values, for reasoning before and during execution.

Definition 7.8 (Uncertain rules). The uncertain rules are listed in Figure 7.5.

After applying uncertain values to a primitive, it may turn out that all the possibilities
are in fact the same. This removes any uncertainty, and means the value can be treated
as an ordinary value in future reductions and outputs.

Example 7.9 (Protocols). One sticking point that arises when using the categorical
framework is the presence of the ⊥ and ⊤ values, which would not normally be
explicitly provided to a circuit. These values mean that some well-known Boolean
identities do not always hold. By using uncertain values, we can specify the values
that will be applied to a circuit and apply reductions that are not valid in general
but are in this context.

In the following example, setting the first two inputs to true/false inverses
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𝑣? 𝑔
⇝ J𝑔K★ (𝑣?)

𝑣? ⇝

𝑣?

𝑣?

𝑤?

𝑣?
⇝

𝑣? ⊔𝑤?

𝑣? 𝑔 ⇝ J𝑔K★ (𝑣?) 𝑣? ⇝
𝑣?

𝑣? 𝑤?

𝑣?
⇝ 𝑣? ⊔𝑤?

𝑣? ⇝ 𝑣 if ∀𝑖, 𝑗 < |𝑣?|, 𝑣?(𝑖) = 𝑣?( 𝑗)

𝑣? ⇝ 𝑣 if ∀𝑖, 𝑗 < |𝑣?|, 𝑣?(𝑖) = 𝑣?( 𝑗)

Figure 7.5: Rules for uncertain values

reduces the circuit to one with combinational behaviour.

f |t ⇝

f |t
f |t ⇝

t|ff |t ⇝

t|t ⇝

t ⇝ t ⇝

t ⇝ ⇝



7.3. Layers of abstraction 140

7.3 Layers of abstraction

Circuits can be viewed at multiple levels of abstraction. One could drop down to the
level of transistors, as illustrated in [GJL17a, Sec. 4.1]. Alternatively, one could become
more abstract, setting the generators to be subcircuits, such as arithmetic operations.

The levels of abstraction need not remain isolated. Using layered explanations [LZ22],
multiple signatures can be mixed in one diagram, with the subcircuits acting as ‘win-
dows’ into different levels of abstraction, and drawn using ‘functorial boxes’ [Mel06].

Example 7.10 (Implementation). Suppose one is working in a high-level signature
Σ+ containing a generator ? , representing an IP core: a circuit that has a
known behaviour but with an unknown implementation. This component can be
left as a blackbox and evaluated as demonstrated above.

The designer then attempts to design their own implementation using the gate-
level signature ΣB. To synthesise the final circuit, a map is defined from generators
in Σ+ to morphisms in SCircΣB , which induces a functor SCircΣ+ → SCircΣB . Differ-
ent implementations can be defined as different maps, and hence different functors.
These circuits can then be tested to see if they act as intended.

+ ? Imp. 1
======⇒ +

SCircΣB

SCircΣ+

+ ? Imp. 2
======⇒ +

SCircΣ𝐵
SCircΣ+

7.4 Refining circuits

A key part of circuit design comes in optimising circuits: making them run as fast as
possible and reduce the clock cycle.

Example 7.11 (Retiming). The clock cycle of a circuit is determined by the longest
paths between registers. Altering the paths between registers can be achieved using
retiming [LS91]: moving registers across gates. This is modelled by the streaming
rule (Lemma 5.25); forward retiming (streaming left to right) is always possible but
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for backward retiming (streaming right to left), the value in the register must be
in the image of the gates.

The streaming rule permits retiming using the composite register construct, but
can also be used to retime raw delay components.

Lemma 7.12 (Timelessness). For any primitive 𝑔 , 𝑔 = 𝑔 .

Proof. 𝑔 = 𝑔 =
𝑔

𝑔

=
𝑔

= 𝑔

When reasoning equationally, the behaviour of the circuits on either side of the
equation must have exactly the same behaviour. However, when reasoning with circuits
it is sometimes the case that this is too strict an assertion; we are looking for circuits
that output the same outputs but over a shorter period of time. This means we may
wish to use transformations that only ‘morally’ preserve the behaviour of a circuit.

Definition 7.13. For two finite sequences 𝑣,𝑤 ∈ (V𝑚)𝑘 , we say that 𝑤 is a stretch-
ing of 𝑣 , written 𝑣 ≪ 𝑤 , if 𝑤 contains the characters of 𝑣 but possibly repeated or
with additional ⊥ characters e.g. tf ≪ ⊥⊥tt⊥f.

Definition 7.14. For two sequential circuits 𝑓𝑚 𝑛 and 𝑔𝑚 𝑛 with 𝑐 and
𝑐′ delay components respectively, we say that 𝑓𝑚 𝑛 is logically equivalent to

𝑔𝑚 𝑛 , written 𝑓𝑚 𝑛 ≪ 𝑔𝑚 𝑛 , if for all sequences 𝑣,𝑤 produced by the
productive operational semantics for inputs of length max(𝑐, 𝑐′), 𝑣 ≪ 𝑤

Including this notion of equivalence in algebraic reasoning allows us to reason
with inequalities as well as equalities, so more efficient circuits can be identified. The
simplest form of reasoning with logical equivalence is where we have the same circuit
but guarded by different numbers of delays.

Notation 7.15. We write
𝑝

for the composition of 𝑝 delay components, i.e.
0

:= and
𝑘 + 1

:=
𝑘

.

Lemma 7.16. For a combinational circuit 𝑓𝑚 𝑛 and 𝑝, 𝑞 ∈ N such that 𝑝 < 𝑞,
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then
𝑝

𝑓 ≪
𝑞

𝑓 .

This means that to reason with delays we can use streaming and timelessness to
propagate them across combinational components, and then use logical equivalence to

Example 7.17. One source of delay in circuits is the time gates take to process
input signals. We can model this by inserting delay components after each gate,
such as in the following circuit:

f

During reasoning we can permit these delays to be moved around, so long as when
we finish any gates are still guarded by delays.

f = f ≫

f = f =

While this is a somewhat contrived toy example, it is possible that this technique
could be applied to actual circuit optimisation procedures.

Example 7.18 (Pipelining). Pipelining [Par99] is a technique in which more regis-
ters are inserted into a circuit to increase throughput. This can be emulated in the
compositional framework by applying transformations locally to registers. Ordinar-
ily, such transformations can obfuscate a circuit’s behaviour since the state space
dramatically changes. In the compositional model, the structure of the circuit is
left relatively untouched so this is less of an issue.

Not all circuit transformations are for the purpose of improving performance. Some-
times additional components must be bolted onto a circuit for testing purposes.

Example 7.19 (Scan chains). A common way of testing circuits is by using a scan
chain [MZ00], a way of forcing the inputs to flipflops to test how specific states
affect the outputs of the circuit. Adding a flipflop to a scan chain requires some
extra inputs: the scanen wire toggles if the flipflop operates in normal mode or if
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it takes scanin as its value.

𝑑
D0

CLK
Q0 𝑑

D1 Q1 𝑑
D2 Q2 scan

====⇒

𝑑
D0

CLK

Q0
scanin

scanen
D1

𝑑

Q1D2
𝑑

Q2
scanout

One could factor in these transformations when designing the circuit, but this can
obfuscate the design of the actual logic. Additionally, applying these transformations
where the remaining part of the circuit is not combinational can be quite complex. With
the compositional approach the two tasks can be kept isolated by using blackboxes,
layered explanations, and graphical reasoning.

7.5 Implementation

Throughout this section we have discussed some potential applications for the compo-
sitional theory for digital circuits. However, the examples have been kept to relatively
small toy examples for ease of presentation and explanation. For readers less convinced
by theoretical results, this might not be enough; how can the framework be adapted for
real-life examples? Because examples can quickly balloon in size, it becomes impractical
to develop and work through them by hand. Instead, it is necessary to pass the work
along to a computer to generate and test things automatically. But how do we even
communicate such things with a computer? This will be answered in great detail in the
next part of this thesis.



Part II

Graph Rewriting for Sequential
Digital Circuits



Chapter 8

String diagrams as hypergraphs

String diagrams are an appealing way of reasoning with pen and paper: they bring
intuition to one-dimensional text strings and can often shed light on the next step of a
proof. Unfortunately, they do have drawbacks: they take up a lot of time and space, and
if not drawn with care can end up being messy, removing any benefit of using them in
the first place.

Instead it is desirable to perform reasoning with string diagrams computationally.
This presents some questions: how can we encode circuits constructed categorically in
such a way that a computer can understand them? Perhaps we could input terms using
traditional one-dimensional text representations? Text is something that computers are
very good at processing, but as we have already established it is verbose, unintuitive,
and, most importantly, means we have to apply the axioms of STMCs explicitly. Sticking
to string diagrams would be ideal, but the representation needs some thought. Although
computers do not deal well with topological objects like string diagrams, they are very
well acquainted with combinatorial objects; for a computer to reason effectively with
string diagrams, they must first be interpreted as graphs.

8.1 String diagram rewriting

Graph rewriting specialised for rewriting sting diagrams is a relatively new field. One of
the first approaches was developed at the turn of the 2010s using string graphs [DDK10;
DK13; Kis12], an example of which is illustrated in Figure 8.1. String graphs have two
classes of vertices for boxes and wires; the former vertices represent generators in string
diagrams and the latter vertices represent the wires between them. One nuance of
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𝜙

𝜙

≺ 𝜓

≻ ≺

Figure 8.1: Example of an interfaced string graph

𝜙

𝜓

𝜙

Figure 8.2: Example of an interfaced hypergraph

string graphs is that a wire in a string diagram can be represented by arbitrarily many
wire vertices connected together; all of these different depictions are identified by a
notion of wire homeomorphism , in which adjacent wire vertices can be collapsed into
one.

String graphs modulo wire homeomorphism are a suitable setting for modelling
traced or compact closed categories, but their main drawback is that a given term may
correspond to many different graphs thanks to wire homeomorphism.

More recently, there has been a flurry of work on string diagram rewriting modulo
Frobenius structure using hypergraphs [BGK+16; Zan17; BGK+17; BGK+18; BGK+22a;
BGK+22b; BGK+22c], such as that in Figure 8.2. Hypergraphs are a generalisation
of graphs in which edges can have arbitrarily many sources and targets, rather than
just one each. When interpreting string diagrams as hypergraphs, generators are
represented as hyperedges and connections between generators indicated by shared
source or target vertices. As there is no restriction for vertices to only be incident on a
single source and target, one can model structures such as monoids or comonoids.

While string diagrams ‘absorb’ the equations of SMCs, hypergraphs go one further
and absorb the equations of a special commutative Frobenius algebra: string diagrams
equal by Frobenius equations are interpreted as isomorphic hypergraphs. This means
rewriting using hypergraphs can be evenmore advantageous than using string diagrams.

Naturally, there have also been variations on this workwhere the complete Frobenius
structure is not present. Suitable restrictions on hypergraphs and the graph rewriting
process are also identified in [BGK+16] for rewriting symmetric monoidal structure.
Research followed on rewritingmodulo (co)monoid structure [MPZ23] (‘half a Frobenius’)
and our work [GK23] on rewriting modulo traced comonoid structure. The latter is the
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basis for this part of the thesis.

8.2 Hypergraphs

We will begin by defining categories of hypergraphs, following the pattern outlined in
[BGK+22a]. Hypergraphs are formally defined as a functor category.

Definition 8.1 (Hypergraph [BGK+16]). Let X be the category with object set
(N × N) + ★ and morphisms s𝑖 : (𝑘, 𝑙) → ★ for each 𝑖 < 𝑘 and t 𝑗 : (𝑘, 𝑙) → ★ for
each 𝑗 < 𝑙 . The category of hypergraphs Hyp is the functor category [X, Set].

One can think of the category X as a ‘template’ for the structure of a hypergraph:
the object ★ represents the vertices and each object (𝑘, 𝑙) represents hyperedges with 𝑘
sources and 𝑙 targets; each such edge must pick 𝑘 sources and 𝑙 targets from ★. Objects
in Hyp are functors that instantiate each object in X to a concrete set. For a hypergraph
𝐹 ∈ Hyp we write 𝐹★ for its vertices and 𝐹𝑘,𝑙 for its edges with 𝑘 sources and 𝑙 targets.

Example 8.2. Let a hypergraph 𝐹 be defined as follows:

𝐹★ := {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} 𝐹2,1 := {𝑒0} 𝐹1,2 := {𝑒1}
s0(𝑒0) := 𝑣1 s1(𝑒0) := 𝑣0 s0(𝑒1) := 𝑣1
t0(𝑒0) := 𝑣3 t0(𝑒1) := 𝑣4 t1(𝑒1) := 𝑣5

Much like with regular graphs, it is more intuitive to draw out hypergraphs rather
than look at their combinatorial representation. We draw vertices as black dots and
hyperedges as ‘bubbles’ with ordered tentacles on the left and right that connect
to source and target vertices respectively, as illustrated in Figure 8.3. Note that
the vertices do not have any notion of ordering or directionality.

Since it is a functor category, the morphisms in Hyp are natural transformations:
structure-preserving maps between hypergraphs.

Definition 8.3 (Hypergraph homomorphism). For two hypergraphs 𝐹,𝐺 ∈ Hyp,
a hypergraph homomorphism 𝑓 : 𝐹 → 𝐺 is a pair of functions 𝑓★ : 𝐹★→ 𝐺★ and
𝑓𝑘,𝑙 : 𝐹𝑘,𝑙 → 𝐺𝑘,𝑙 such that the following diagrams commute:

𝐹𝑘,𝑙 𝐺𝑘,𝑙

𝐹★ 𝐺★

𝑓𝑘,𝑙

s𝑖 s𝑖
𝑓★

𝐹𝑘,𝑙 𝐺𝑘,𝑙

𝐹★ 𝐺★

𝑓𝑘,𝑙

t𝑖 t𝑖
𝑓★
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𝜓

𝜙

𝜙

𝜓

Figure 8.3: Illustration of the hypergraph from Example 8.2, the hy-
pergraph signature from Example 8.6, and the labelling of the former
with the latter from Example 8.9

Example 8.4. Consider the following hypergraph 𝐺 :

𝐺★ := {𝑣6, 𝑣7, 𝑣8} 𝐺2,1 := {𝑒2}
s0(𝑒2) := 𝑣6 s1(𝑒2) := 𝑣7 t0(𝑒2) := 𝑣8

Recall the hypergraph 𝐹 from Example 8.2. A homomorphism ℎ : 𝐺 → 𝐹 is a
map from the vertices and edges of the former to those of the the latter preserving
sources and targets; one possible homomorphism could be

ℎ★(𝑣6) := 𝑣1 ℎ★(𝑣7) := 𝑣0 ℎ★(𝑣8) := 𝑣3
ℎ2,1(𝑒2) := 𝑒0

Injective hypergraph homomorphisms are often known as embeddings. However,
there is no requirement for hypergraph homomorphisms to be injective. Consider
another hypergraph 𝐻 defined as

𝐻★ := {𝑣9} 𝐻2,1 := {𝑒3}
s0(𝑒3) = 𝑣9 s1(𝑒3) = 𝑣9 t0(𝑒3) = 𝑣9

There is a non-injective homomorphism 𝑘 : 𝐺 → 𝐻 defined as follows:

ℎ★(𝑣6) := 𝑣9 ℎ★(𝑣7) := 𝑣9 ℎ★(𝑣8) := 𝑣9 ℎ2,1(𝑒2) := 𝑒3

Although the vertices of 𝐺 are merged by ℎ, the sources and targets are preserved.

8.2.1 Labelled hypergraphs

The graphical notation for hypergraphs is particularly evocative of string diagrams:
generators correspond to hyperedges and wires to the vertices between them. The only
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thing missing is that the hyperedges are not labelled with generator symbols.

Definition 8.5 (Hypergraph signature [BGK+16]). For a set of generators Σ with
arities and coarities as defined in Definition 2.2, the corresponding hypergraph
signature JΣK is an object of Hyp defined as follows:

JΣK★ := {𝑣} JΣK𝑘,𝑙 := {𝑒𝑔 | 𝑔 ∈ Σ} s𝑖 (𝑒𝑔) := 𝑣 t 𝑗 (𝑒𝑔) := 𝑣

Example 8.6. Let Σ𝑚 := {𝜙 : 2→ 1,𝜓 : 1→ 2} be a monoidal signature. The
corresponding hypergraph signature JΣK is

JΣK★ := {𝑣} JΣK2,1 := {𝑒𝜙 } JΣK1,2 := {𝑒𝜓 }
s0(𝑒𝜙 ) := 𝑣 s1(𝑒𝜙 ) := 𝑣 s0(𝑒𝜓 ) := 𝑣 t0(𝑒𝜙 ) := 𝑣 t0(𝑒𝜓 ) := 𝑣 t1(𝑒𝜓 ) := 𝑣

and is drawn as in the middle of Figure 8.3, where the edges are annotated with
the appropriate label for clarity.

A hypergraph 𝐹 labelled over Σ is a hypergraph homomorphism Γ : 𝐹 → JΣK; an
edge 𝑒 ∈ 𝐹𝑘,𝑙 is labelled with generator𝜙 if Γ𝑘,𝑙 (𝑒) = 𝑒𝜙 . This means a category of labelled
hypergraphs is a category in which the objects are hypergraph homomorphisms to JΣK.
This is a well-studied categorical template, and it has a special name.

Definition 8.7 (Slice category [Law63]). For a category C and an object 𝐶 ∈ C,
the slice category C ↓ 𝐶 has as objects the morphisms of C with target 𝐶 and as
morphisms (𝑓 : 𝑋 → 𝐶) → (𝑔 : 𝑋 ′→ 𝐶) the morphisms 𝑔 : 𝑋 → 𝑋 ′ ∈ C such that
𝑓 ′ ◦ 𝑔 = 𝑓 .

Each object in a slice category C ↓ 𝐶 is a morphism with 𝐶 as its target. When we
set 𝐶 to some hypergraph signature, this is a perfect setting for labelled hypergraphs.

Definition 8.8 (Labelled hypergraphs [BGK+16]). For a set of generators Σ, the
category of Σ-labelled hypergraphs is the slice category HypΣ := Hyp ↓ JΣK.

Example 8.9. One labelling of the hypergraph 𝐹 from Example 8.2 could be defined
using the homomorphism Γ : 𝐹 → JΣ𝑚K with action

Γ★(−) := 𝑣 Γ2,1(𝑒0) := 𝑒𝜙 Γ1,2(𝑒1) := 𝑒𝜓

We draw a labelled hypergraph as a regular hypergraph but with labelled edges, as
shown in Figure 8.3. If there are multiple generators with the same arity and coarity
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𝜓

𝜙

𝜙

𝜓

Figure 8.4: Illustration of the coloured hypergraph signature from
Example 8.11 and the labelling of the hypergraph in Example 8.2 from
Example 8.13

in a signature, there may well be multiple valid labellings of a hypergraph.

8.2.2 Coloured hypergraphs

We may additionally work over a countable set of colours. Accordingly, hypergraph
signatures can be generalised to coloured hypergraph signatures.

Definition 8.10 (Coloured hypergraph signature [BGK+16]). For a countable set
set 𝐶 and a set of 𝐶-coloured generators Σ as defined in Definition 2.2, the coloured
hypergraph signature J(𝐶, Σ)K is an object of Hyp defined as follows:

J(𝐶, Σ)K★ := {𝑣𝑐 | 𝑐 ∈ 𝐶} J(𝐶, Σ)K𝑘,𝑙 := {𝑒𝑔 | 𝑔 ∈ Σ}
s𝑖 (𝑒𝑔) := 𝑣dom(𝑒𝑔) (𝑖) t 𝑗 (𝑒𝑔) := 𝑣cod(𝑒𝑔) ( 𝑗)

Example 8.11. Let 𝐶 := {•, •} be let Σ𝑐 := {𝜙 : •• → •,𝜓 : • → ••} be a monoidal
signature; the coloured hypergraph signature J(C, Σ𝑐)K is

J(𝐶, Σ𝑐)K★ := {𝑣•, 𝑣•} J(𝐶, Σ𝑐)K2,1 := {𝑒𝜙 } J(𝐶, Σ𝑐)K1,2 := {𝑒𝜓 }
s0(𝑒𝜙 ) := 𝑣• s1(𝑒𝜙 ) := 𝑣• s0(𝑒𝜓 ) := 𝑣• t0(𝑒𝜙 ) := 𝑣• t0(𝑒𝜓 ) := 𝑣• t1(𝑒𝜓 ) := 𝑣•

and is drawn by labelling edges appropriately as in Figure 8.4.

Definition 8.12 (Coloured hypergraphs [BGK+16]). For a countable set 𝐶 and
set of 𝐶-coloured generators Σ, let Hyp𝐶,Σ be the category of (𝐶, Σ)-labelled hyper-
graphs, defined as the slice category Hyp ↓ J(C, Σ)K.

Example 8.13. Returning again to the hypergraph 𝐹 in Example 8.2, we can label
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it with colours and generators from (𝐶, Σ𝑐) with the hypergraph homomorphism

Γ★(𝑣0) := 𝑣• Γ★(𝑣1) := 𝑣• Γ★(𝑣2) := 𝑣•
Γ★(𝑣3) := 𝑣• Γ★(𝑣4) := 𝑣• Γ★(𝑣5) := 𝑣•

Γ2,1(𝑒0) := 𝑒𝜙 Γ1,2(𝑒1) := 𝑒𝜓

Coloured hypergraphs are drawn as labelled hypergraphs, but their vertices are
additionally coloured, as shown in Figure 8.4.

8.2.3 Cospans of hypergraphs

String diagrams also have input and output interfaces. (Labelled) hypergraphs may
have suggestively dangling vertices in the pictures, but this is not actually encoded
in the definition; moreover we may wish to set a non-dangling vertex as an input or
output. To set the interfaces of a hypergraph, hypergraph homomorphisms are used to
‘pick’ the appropriate vertices.

Definition 8.14 (Cospan). A cospan is a pair of morphisms 𝑋 → 𝐴 and 𝑌 → 𝐴,
written 𝑋 → 𝐴← 𝑌 . A cospan morphism (𝑋

𝑓
−→ 𝐴

𝑔
←− 𝑌 ) → (𝑋 ℎ−→ 𝐵

𝑘←− 𝑌 ) is a
morphism 𝛼 : 𝐴→ 𝐵 such that the following diagram commutes:

𝐴

𝑋 𝑌

𝐵

𝛼

𝑓

ℎ

𝑔

𝑘

Two cospans 𝑋 → 𝐴← 𝑌 and 𝑋 → 𝐵 ← 𝑌 are isomorphic if there exists a mor-
phism of cospans as above where 𝛼 is an isomorphism.

Cospans will be used to model interfaced hypergraphs; for a cospan 𝑋 → 𝐴← 𝑌

the ‘apex’ 𝐴 will be a hypergraph and the ‘legs‘ 𝑋 → 𝐴 and 𝑌 → 𝐴 are input and
output maps respectively. Since we will be comparing interfaced hypergraphs with
string diagram terms, we require a categorical setting in which the objects are cospans
of hypergraphs, so they must be composable.

Definition 8.15 (Composition of cospans). In a category C with pushouts, the
composition of cospans 𝑋

𝑓
−→ 𝐴

𝑔
←− 𝑌 and 𝑌

ℎ−→ 𝐵
𝑘←− 𝑍 is a cospan 𝑋 → 𝐷 ← 𝑌

where 𝐷 is computed by pushout:
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𝐷

𝐴 𝐵

𝑋 𝑌 𝑍

⌝

𝑓

𝑔 ℎ 𝑘

Definition 8.16 (Categories of cospans). Let C be a category with finite colimits.
The category of cospans over C, denoted Csp(C), has as objects the objects of
C and as morphisms 𝐴 → 𝐵 the isomorphism classes of cospans 𝐴→ 𝑋 ← 𝐵 for
some 𝑋 ∈ C. Composition is by pushout as detailed in Definition 8.15 and the
identity is 𝑋 id𝑋−−→ 𝑋

id𝑋←−− 𝑋 .

Lemma 8.17. For a category C with finite colimits, Csp(C) is symmetric monoidal
with the tensor given by the coproduct in C, the monoidal unit given by the initial
object 0 ∈ C, and the symmetry defined as the cospan 𝐴 + 𝐵 → 𝐴 + 𝐵 ← 𝐵 +𝐴.

Proof. It is a simple exercise to check that the equations of SMCs hold.

As mentioned above, the legs of the cospan will act as the interfaces of the hyper-
graph: the hypergraph homomorphisms from the legs to the apex will pick out the
input and output. But this means that not every hypergraph can act as an interface to a
hypergraph, as any edges in the hypergraphs would also need to be mapped somewhere.
We must restrict the interface hypergraphs to those that contain only vertices.

Definition 8.18 (Discrete hypergraph). A discrete hypergraph is a hypergraph in
which each edge set is empty.

The legs of cospans representing interfaced hypergraphs will be discrete hyper-
graphs; if a hypergraph 𝐹 has𝑚 inputs then the input hypergraph 𝐴 will contain𝑚
vertices. This is not enough to fully specify the interfaces, as there must also be a notion
of order. We need a way of specifying which vertex corresponds to which numbered
input or output; this is formally performed by another functor.

Theorem 8.19 ([BGK+22a], Thm. 3.6). Let X be a PROP in which the monoidal
product is a coproduct, let C be a category with finite colimits, and let 𝐹 : X→ C be
a coproduct-preserving functor. Then there exists a PROP Csp𝐹 (C) whose arrows
𝑚 → 𝑛 are isomorphism classes of C cospans 𝐹𝑛 → 𝐶 ← 𝐹𝑛.
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Proof. Composition is given by pushout. 𝐹 preserves coproducts so 𝐹 (𝑚 + 𝑝) �
𝐹𝑚 + 𝐹𝑝 and 𝐹 (𝑛 + 𝑞) � 𝐹𝑛 + 𝐹𝑞; subsequently the coproduct of 𝐹𝑚 → 𝐶 ← 𝐹𝑛

and 𝐹𝑝 → 𝐶 ← 𝐹𝑞 is given by 𝐹𝑚 + 𝐹𝑝 → 𝐶 + 𝐷 ← 𝐹𝑝 + 𝐹𝑞. Symmetries in X

are determined by the universal property of the coproduct; they are inherited by
Csp𝐹 (C) because 𝐹 preserves coproducts.

𝐹 is the functor that will be used to map the objects in the cospan legs with some
notion of ordering. For our purpose, the domain of this functor will be the PROP of
finite sets {0, 1, 2, . . . ,𝑚 − 1}.

Definition 8.20. Let F be the PROP with morphisms𝑚 → 𝑛 the functions between
finite sets [𝑚] → [𝑛].

We can now state the functor used to assemble interfaces of hypergraphs into words.

Definition 8.21. Let 𝐷 : F→ HypΣ be defined as the functor sending an object 𝑛
to the discrete hypergraphs with 𝑛 vertices, and sending a function 𝑚 → 𝑛 to the
induced homomorphism of discrete hypergraphs.

Instantiating Theorem 8.19 with 𝐷 produces the category of interfaced hypergraphs.

Corollary 8.22. There is a PROP Csp𝐷 (HypΣ) where the morphisms are isomor-
phism classes of interfaced hypergraphs.

Example 8.23. Recall the labelled hypergraph 𝐹 from Example 8.9. We assign
interfaces to it as the cospan 3

𝑓
−→ 𝐹

𝑔
←− 3, where

𝑓 (0) = 𝑣0 𝑓 (1) = 𝑣1
𝑔(0) = 𝑣5 𝑔(1) = 𝑣4 𝑔(2) = 𝑣2

Interfaces are drawn on the left and right of a main graph, with numbers illustrating
the action of the cospan maps.

𝜙

𝜓

0
1

4
2
3

0

1

2
3
4

For clarity, we number the outputs after the inputs, but this does not reflect the
mapping performed by 𝐷. Composition in Csp𝐷 (HypΣ) is by pushout; effectively
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the vertices in the output of the first cospan are ‘glued together’ with the inputs
of the second. Note that although we write different numbers for the glued cospan
legs, they are actually mapped from the same finite set of three elements.

𝜙

𝜓

0
1

4
2
3

0

1

2
3
4

# 𝜙

𝜓

5
6
7

6 8
5

7
8 =

0

1
8𝜙

𝜓

0
1 𝜙

𝜓

8

Tensor in Csp𝐷 (HypΣ) is by direct product; putting cospans on top of each other.

𝜙

𝜓

0
1

4
2
3

0

1

2
3
4
⊗ 𝜙

𝜓

5
6
7

6 8
5

7
8 =

0
1

2
3
4

5
6
7

8

𝜙

𝜓

0
1

4
2
3

𝜙

𝜓

6 8
5

7

8.2.4 Coloured cospans

In the coloured setting there is slightly more nuance as the legs of the cospans are not
just numbers but words of colours in some countable set C.

Theorem 8.24. Let X be a coloured PROP whose monoidal product is a coproduct,
C a category with finite colimits, and 𝐹 : X→ C a coproduct-preserving functor.
Then there exists a coloured PROP Csp𝐹 (C) whose arrows𝑚 → 𝑛 are isomorphism
classes of C cospans 𝐹𝑚 → 𝐶 ← 𝐹𝑛.

Proof. As Theorem 8.19 but with word concatenation rather than addition.
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It only remains to determine exactly what the functor 𝐹 should be. In [BGK+22a],
objects [𝑚] ∈ F are be coloured over some finite set of colours C using a morphism
[𝑚] → C. Since we are working with potentially countably infinite sets of colours, the
definition of F must first be tweaked.

Definition 8.25. Let F̂ be the category F augmented with the set of natural num-
bers and the functions [𝑚] → N for each finite set [𝑚].

Adding in morphisms [𝑚] → N allows for colourings with countably infinite sets
of colours; the PROP of finite sets coloured over some countable set 𝐶 is the slice F̂ ↓ 𝐶 .
Objects of this category are pairs ( [𝑚],𝑤 : [𝑚] → 𝐶); this pair can be viewed as a word
in 𝐶★ of length𝑚, with the 𝑖th letter as𝑤 (𝑖).

Remark 8.26. Note that we do not include the morphisms N → [𝑚] in F̂; this
is because when we view objects of F̂ ↓ 𝐶 as words in 𝐶★, we still only want to
consider finite words despite there being potentially countably infinite colours.

All that remains is to verify that F̂ ↓ 𝐶 is indeed a coloured PROP. To assist in this
endeavour, we recall a property of slice categories.

Lemma 8.27. For a category C with coproducts, C ↓ 𝑋 has coproducts.

Proof. Let 𝐴, 𝐵,𝑋 be objects in C; as C has coproducts 𝐴 + 𝐵 is also an object in
C. Then the coproduct of (𝐴,𝐴→ 𝑋 ) and (𝐵, 𝐵 → 𝑋 ) in C ↓ 𝑋 is 𝐴 +𝐵 → 𝑋 ; the
universal morphism is [𝑓 , 𝑔].

Following the strategy of [BGK+22a, Prop. 2.23], we now show that F̂ ↓ 𝐶 is a
coloured PROP.

Proposition 8.28. For a countable set 𝐶, F̂ ↓ 𝐶 is a coloured PROP.

Proof. As established, the objects of F̂ ↓ 𝐶 can be viewed as words in 𝐶★. As slice
categories preserve coproducts by Lemma 8.27, F̂ ↓ 𝐶 is strict symmetric monoidal,
and the coproduct acts as concatenation of words.

The category of interfaced coloured hypergraphs is then constructed in the same
way as the monochromatic version.
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Definition 8.29 ([BGK+22a], Rem. 3.12). Let 𝐷𝐶 : F̂ ↓ 𝐶 → Hyp𝐶,Σ be defined
as the functor sending a word 𝑛 to the corresponding discrete coloured hypergraph
containing vertices coloured as in 𝑛, and sending a function 𝑚 → 𝑛 to the induced
homomorphism of discrete hypergraphs.

As with the monochromatic case, applying Theorem 8.24 to this functor gives us a
category of coloured interfaced hypergraphs Csp𝐷𝐶

(Hyp𝐶,Σ).

Example 8.30. Composition in Csp𝐷𝐶
(Hyp𝐶,Σ) is as in Csp𝐷 (HypΣ) but now the

glueing must also preserve colours.

𝜙

𝜓
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3

0

1

2
3
4

# 𝜙

𝜓

5
6
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6 8
5

7
8 =

0

1
8𝜙

𝜓

0
1 𝜙

𝜓

8

The tensor is exactly the same as in Csp𝐷 (HypΣ).

𝜙
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4
2
3

0

1

2
3
4
⊗ 𝜙
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8.3 Frobenius terms as hypergraphs

In order to perform graph rewriting on string diagrams, we will interpret the latter as
cospans of hypergraphs. We will first recount the constructions used by Bonchi et al in
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[BGK+22a] for a broader class of terms before showing their recipe can be adapted for
a traced setting either with or without a comonoid structure.

8.3.1 Frobenius structure

When reasoning with monoidal theories and string diagrams, two structures that
often appear are a commutative monoid (for joining and introducing wires) and a
cocommutative comonoid (for forking and eliminating wires).

Themonoid and comonoid are subject to the usual equations of (co)unitality, (co)associativity
and (co)commutativity.

= = =

= = =

When monoids and comonoids appear together, there are multiple ways they can
interact. One way is by using the equations of a Frobenius algebra; this is particularly
relevant to us because symmetric monoidal terms equipped with a Frobenius structure
correspond precisely to the cospans of hypergraphs defined in the previous section.

Definition 8.31. The monoidal theory of special commutative Frobenius algebras
is defined as (ΣFrob, EFrob), where ΣFrob := { , , , } and the
equations of EFrob are listed in Figure 8.5. We write Frob := SΣFrob,EFrob .

The equations of special Frobenius algebras are those of commutative monoids and
cocommutative comonoids along with the ‘Frobenius’ and ‘special’ equations.

Example 8.32. The following are all terms in Frob:
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= (MU) = (MA) = (MC)

= (CU) = (CA) = (CC)

= (FCM1) = (FCM2) = (FMC)

Figure 8.5: Equations EFrob of a special commutative Frobenius algebra.

Using the equations of EFrob, it can be shown that the latter two terms are equal:

(MUL)
=

(FCM1)
=

(MA)
=

(FCM2)
=

Effectively, any terms in Frob with the same input-output connectivity are equal.

8.3.2 Coloured Frobenius

Frob is a monochromatic PROP. To define a coloured version of Frob we simply use a
different copy of Frob to represent each colour, using a fact about PROP and CPROP.

Theorem 8.33 ([BCR18], Corollary 5.3). PROP has coproducts.

This generalises to CPROP by replacing natural numbers with words. This means
that given coloured PROPs C and D with objects the words in 𝐶★ and 𝐷★ respectively,
there is also a coloured PROP C +D with objects the words in (𝐶 + 𝐷)★ and morphisms
defined in the obvious way. We can use this to define a multi-coloured version of Frob
as a coproduct of copies of Frob.

Definition 8.34 ([BGK+22a]). For a countable set 𝐶, let Frob𝐶 ∈ CPROP be
defined as Frob𝐶 :=

∑
𝑐∈𝐶 Frob.
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𝐴 ⊗ 𝐵𝐴 ⊗ 𝐵
𝐴 ⊗ 𝐵 = 𝐵

𝐴

𝐴

𝐵

𝐴

𝐵
𝐴 ⊗ 𝐵 = 𝐴

𝐵

𝐴 ⊗ 𝐵 𝐴 ⊗ 𝐵
𝐴 ⊗ 𝐵 =

𝐵
𝐴

𝐴

𝐵

𝐴
𝐵 𝐴 ⊗ 𝐵 = 𝐴

𝐵

Figure 8.6: Equations of a hypergraph category

Example 8.35. In Frob𝐶 , there is a copy of the Frobenius structure for each colour
in 𝐶. For example, when C := {•, •}, the following are terms in Frob𝐶 .

Although there are two different colours of wires, these wires cannot interact with-
out the addition of other generators to map between them.

8.3.3 Hypergraph categories

Frobenius structures have turned out to be very useful in studying compositional
processes such as quantum processes [CD08] and signal flow graphs [BSZ14; BSZ15].
It is useful to talk about the setting in which every object has such a structure.

Definition 8.36 (Hypergraph category [FS19]). A hypergraph category is a cate-
gory in which every object is equipped with a special commutative Frobenius algebra
subject to the coherence equations in Figure 8.6.

Remark 8.37. The notion of a hypergraph category has been rediscovered numer-
ous times over the years. They were originally called well-supported compact closed
categories by Carboni and Walters [CW87], and have subsequently appeared as
dgs-monoidal categories [KSW97; GH98; GHL99; BGM02] and dungeon cate-
gories [Mor14]. The term hypergraph categories was coined more recently but
has become the standard in the compositional processes community [Kis15; Fon15;
BFP16; BF18].
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As the Frobenius structure is their entire raison d’être, it is unsurprising that the
categories of Frobenius terms we encountered earlier are hypergraph categories.

Lemma 8.38. Frob is a hypergraph category.

Proof. The generators in Frob provide the Frobenius structure for the object 1;
for the other objects the structure is derived by following the recipes given by the
coherence equations in Figure 8.6.

It is now possible to formally define what we mean when we say ‘Frobenius terms’.

Definition 8.39. For a set of generators Σ, let HΣ be the PROP freely generated
over Σ + ΣFrob.

While we can view HΣ as just ‘the category containing all the Frobenius terms’, it
can be advantageous to view it as a coproduct.

Lemma 8.40. HΣ � SΣ + Frob.

Proof. Every term in HΣ can be expressed as a combination of generators either in
SΣ or Frob.

We can also proceed similarly for the multi-coloured case.

Lemma 8.41. Frob𝐶 is a hypergraph category.

Proof. As Lemma 8.38, but there is now a ‘base’ Frobenius structure for each
colour 𝑐 ∈ 𝐶.

Definition 8.42. For a set of 𝐶-coloured generators over Σ, let H𝐶,Σ be the 𝐶-
coloured PROP freely generated over Σ + ΣFrob𝐶 .

Lemma 8.43. H𝐶,Σ � S𝐶,Σ + Frob𝐶 .

Viewing HΣ and H𝐶,Σ as coproducts will prove to be beneficial when establishing a
correspondence between terms and graphs in the the next section, as it allows us to
consider the symmetric monoidal and the Frobenius components separately.
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8.3.4 Hypergraph categories and hypergraphs

Perhaps confusingly, the category of hypergraphs HypΣ is not a hypergraph category,
but the category of cospans of hypergraphs is. This can be shown by exploiting a
correspondence between Frob and the PROPs of finite sets we encountered earlier.

Proposition 8.44 ([Lac04], Ex. 5.4). Frob � Csp(F).

We omit the formal proof and sketch the correspondence. Terms in Frob are formed
of all the ways of combining , , , , , and in sequence and
parallel, so a string diagram for a term 𝑓 : 𝑚 → 𝑛 is depicted as 𝑥 connected components
drawing paths from𝑚 inputs to 𝑛 outputs, such as in the example below.

Note there is no requirement for each component to connect to one or both interfaces
as the and generators can introduce and stub wires. A term 𝑓 : 𝑚 → 𝑛 with 𝑥

connected components corresponds to a cospan of finite sets [𝑚] 𝑖−→ [𝑥]
𝑗
←− [𝑛], where

the functions 𝑖 and 𝑗 map the inputs and outputs to the components they connect to.

Example 8.45. Consider the term 𝑓 : 5→ 4 drawn on the left below. This corre-
sponds to a cospan [5] → [3] ← [4] as shown on the right below.

⇔

0
1
2

0
1
2

0
1

2
3

3
4

The cospan representation shows how all connected Frobenius components can be
‘squished’ into a single blob.

We have now ascertained the relationship between Frob and Csp(F). The missing
link is the relationship between the latter and Csp𝐷 (HypΣ); this arises as a special case
of the following theorem.

Theorem 8.46 ([BGK+22a], Thm. 3.8). Let X be a PROP in which the monoidal
product is a coproduct, let C be a category such that X and C have finite limits,
and let 𝐹 : X→ C be a colimit-preserving functor. Then there is a homomorphism
of PROPs 𝐹 : Csp(X) → Csp𝐹 (C) that sends 𝑚

𝑓
−→ 𝑋

𝑔
←− 𝑛 to 𝐹𝑚

𝐹 𝑓
−−→ 𝐹𝑋

𝐹𝑔
←−− 𝐹𝑛.

If 𝐹 is full and faithful, then 𝐹 is faithful.
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Proof. Since 𝐹 preserves finite colimits, it preserves composition (pushout) and
monoidal product (coproduct); symmetries are clearly preserved. To show that 𝐹 is
faithful when 𝐹 is full and faithful, suppose that 𝐹 (𝑚

𝑓
−→ 𝑋

𝑔
←− 𝑛) = 𝐹 (𝑚

𝑓 ′

−→ 𝑋
𝑔′

←− 𝑛).
This gives us the following commutative diagram in C:

𝐹𝑋

𝐹𝑚 𝐹𝑛

𝐹𝑌

𝜙

𝐹 𝑓

𝐹 𝑓 ′

𝐹𝑔

𝐹𝑔′

where 𝜙 is an isomorphism because morphisms in Csp𝐹 (C) are isomorphism classes
of cospans. As 𝐹 is full, there exists𝜓 : 𝑋 → 𝑌 such that 𝐹𝜓 = 𝜙 . As 𝐹 is faithful, 𝜓
is an isomorphism; this means 𝑚

𝑓
−→ 𝑋

𝑔
←− 𝑛 and 𝑚

𝑓 ′

−→ 𝑋
𝑔′

←− 𝑛 are equal in Csp(X),
so 𝐹 is faithful.

Corollary 8.47 ([BGK+22a], Cor. 3.9). There is a faithful PROP morphism
�̃� : Csp(F) → Csp𝐷 (HypΣ)

With this we can derive a map from Frobenius terms to cospans of hypergraphs.

Definition 8.48. Let [−]Σ : Frob→ Csp𝐷 (HypΣ) be the PROP morphism defined
by using Proposition 8.44 followed by Corollary 8.47.

Example 8.49. The action of [−]Σ on the Frobenius generators is as follows:[ ]
Σ
=

[ ]
Σ
=[ ]

Σ
=

[ ]
Σ
=

As there is a faithful embedding of Frob into Csp𝐷 (HypΣ) and both categories share
the same objects, we also get the result alluded to at the start of this section.

Corollary 8.50. Csp𝐷 (HypΣ) is a hypergraph category.

8.3.5 From coloured terms to coloured graphs

This result shows how the correspondence works for the monochromatic case; what
about for coloured terms? Here, we replace F with the coloured version F̂ ↓ 𝐶 seen
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in the previous section. A coloured version of Proposition 8.44 was shown for a finite
set of colours in [BGK+22a]; we recall its proof before extending this to the countable
setting we work in.

Lemma 8.51. In a category C with a terminal object 1, C � C ↓ 1.

Proof. Since 1 is terminal, there is a unique morphism 𝐴 → 1 for each object 𝐴
in C, so there is an object (𝐴, !𝐴 : 𝐴→ 1) in C ↓ 1 for each object 𝐴 ∈ C. In
C ↓ 1 there is a morphism (𝐴, !𝐴 : 𝐴→ 1) → (𝐵, !𝐵 : 𝐵 → 1) in for every morphism
𝑓 : 𝐴→ 𝐵 ∈ C such that 𝑓 # !𝐵 = !𝐴; since both 𝑓 # !𝐵 and !𝐴 are morphisms 𝐴→ 1
they must be the same unique morphism. Therefore C � C ↓ 1.

Theorem 8.52 ([BGK+22a], Theorem 2.24). For a finite set of colours 𝐶 ∈ F,
there is an isomorphism of coloured PROPs Frob𝐶 � Csp(F ↓ 𝐶).

Proof. By definition of Frob𝐶 , Definition 8.34, Proposition 8.44, and Lemma 8.51
we have that

Frob𝐶 :=
∑︁
𝑐∈𝐶

Frob �
∑︁
𝑐∈𝐶

Csp(F) �
∑︁
𝑐∈𝐶

Csp(F ↓ 1)

In the other direction we have that Csp(F ↓ 𝐶) � Csp(F ↓ ∑𝑐∈𝐶 1) as𝐶 is countable.
So we need to show that

∑
𝑐∈𝐶 Csp(F ↓ 1) � Csp(F ↓ ∑𝑐∈𝐶 1). The objects of the

former are coproducts of objects in F ↓ 𝐶; as this is a coloured prop the coproduct is
concatenation and subsequently the objects can be viewed as words in 𝐶★. Similarly,
the objects of the latter are objects of F ↓ ∑𝑐∈𝐶 1, which can clearly also be seen
as words in 𝐶★.

The morphisms of the former are coproducts of cospans, which can equivalently
be viewed as a single cospan with coproducts in the legs and apex; using the
reasoning above this means it is a cospan of words in 𝐶★; it is easy to see that this
is also the case for morphisms in the latter.

We need to show a version of this for the case where 𝐶 may be countably infinite.
The strategy is much the same as, but relies on one small observation.

Lemma 8.53. Let 𝐶 ∈ F be a finite cardinal. Then F̂ ↓ 𝐶 � F ↓ 𝐶.

Proof. The morphisms in F̂ ↓ 𝐶 are the morphisms [𝑚] → 𝐶 for finite 𝐶, which
are precisely the morphisms of F ↓ 𝐶.
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This slips in to the proof above to extend it to countable sums.

Theorem 8.54. For a countable set 𝐶, there is an isomorphism of coloured PROPs
Frob𝐶 � Csp(F̂ ↓ 𝐶).

Proof. The proof is almost the same as Theorem 8.52 but with the addition of
Lemma 8.53. We have that

Frob𝐶 :=
∑︁
𝑐∈𝐶

Frob �
∑︁
𝑐∈𝐶

Csp(F) �
∑︁
𝑐∈𝐶

Csp(F ↓ 1) �
∑︁
𝑐∈𝐶

Csp(F̂ ↓ 1).

In the other direction we still have that Csp(F̂ ↓ 𝐶) � Csp(F̂ ↓ ∑𝑐∈𝐶 1) as 𝐶 is still
countable. As before we need to show that

∑
𝑐∈𝐶 Csp(F̂ ↓ 1) � Csp(F̂ ↓ ∑𝑐∈𝐶 1),

which follows by the same reasoning as in the prequel.

As with the monochromatic case, we must now define a map from finite sets to
discrete hypergraphs.

Definition 8.55. For a countable set 𝐶, let 𝐷𝐶 : F̂ ↓ 𝐶 → H𝐶,Σ be defined as the
functor that maps a coloured word𝑤 to the discrete coloured hypergraph containing
an appropriately coloured vertex for each element of 𝑤 .

Corollary 8.56 ([BGK+22a], Rem. 3.12). There is a faithful PROP morphism
𝐷𝐶 : Csp(F̂ ↓ 𝐶) → Csp𝐷𝐶

(Hyp𝐶,Σ).

It is now possible to map from coloured Frobenius terms to cospans of hypergraphs.

Definition 8.57. Let [−]𝐶,Σ : Frob𝐶 → Csp𝐷𝐶
(Hyp𝐶,Σ) be the homomorphism ob-

tained by composing the isomorphism of Theorem 8.54 with Corollary 8.56.

Corollary 8.58. Csp𝐷𝐶
(Hyp𝐶,Σ) is a hypergraph category.

8.3.6 From terms to graphs

Our goal is to map from terms in HΣ into cospans in Csp𝐷 (HypΣ). As we know that
HΣ can be viewed as the coproduct SΣ + Frob, it suffices to define this map in terms of
a map from SΣ and a map from Frob. The results of the previous section gives us the
latter, so all that remains is the former.
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Definition 8.59 ([BGK+22a, Sec. 4.1]). Let J−KΣ : SΣ → Csp𝐷 (HypΣ) be a PROP
morphism with the action on generators defined as

J 𝜙𝑚 𝑛 KΣ :=𝑚 → 𝜙
...

...𝑚 𝑛 ← 𝑛

To map from terms in a hypergraph category to cospans of hypergraphs, we simply
put the two maps together.

Definition 8.60. Let ⟨⟨−⟩⟩Σ : SΣ + Frob→ Csp𝐷 (HypΣ) be the PROP morphism
defined as the copairing of J−KΣ and [−]Σ.

Already we have all we need to state one of the key results of [BGK+22a]: the corre-
spondence between terms with a Frobenius structure and cospans of hypergraphs. We
will state one corollary concerning cospans of discrete hypergraphs before proceeding
to the main result.

Corollary 8.61. Given a discrete hypergraph 𝑘 ∈ HypΣ, any cospan 𝑚 → 𝑘 ← 𝑛

in Csp𝐷 (HypΣ) is in the image of [−]Σ.

Proof. By Proposition 8.44.

Cospans of this form will play a part in the main theorem, in which we show the
isomorphism between Frobenius terms and cospans of hypergraphs by decomposing a
given cospan into a particular form.

Theorem 8.62 ([BGK+22a], Theorem 4.1). There is an isomorphism of PROPs
SΣ + Frob � Csp𝐷 (HypΣ).

Proof. Since SΣ + Frob is a coproduct in PROP, this can be shown by proving that
Csp𝐷 (HypΣ) satisfies the universal property of the coproduct: given a coloured
PROP A and PROP morphisms SΣ → A and Frob → A, there exists a unique
morphism 𝑢 : Csp𝐷 (HypΣ) → A as below:

S𝐶,Σ Csp𝐷 (HypΣ) Frob

A

J−KΣ

𝑓
𝑢

[−]Σ

𝑔

All the PROP morphisms involved are identity-on-objects, so all that is required to
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show the existence of 𝑢 is to show that any morphism in Csp𝐷𝐶
(Hyp𝐶,Σ) can be

expressed as a composition of components either in the image of J−KΣ or [−]Σ.
Consider a cospan 𝑚

𝑓
−→ 𝐺

𝑔
←− 𝑛 in Csp𝐷𝐶

(Hyp𝐶,Σ); let 𝑁 be the set of vertices,
let 𝐸 be the set of hyperedges, and let 𝜒 : 𝐸 → Σ be the induced labelling func-
tion. Pick an order 𝑒0, 𝑒1, 𝑒 𝑗−1 on the edges; then define �̃� 𝑠−→ 𝐸

𝑡←− �̃� as the cospan⊗
0≤𝑖< 𝑗J𝜒 (𝑒𝑖)KΣ. This cospan ‘stacks up’ the edges in 𝐺 without connecting them

together; the legs of the cospan are the sources and targets of these edges concate-
nated in the order specified. It is easy to define functions 𝑓 ′ : 𝑚 → 𝑁 , 𝑔′ : 𝑛 → 𝑁 ,
ℎ : �̃� → 𝑁 and 𝑘 : �̃� → 𝑁 that send vertices to the corresponding vertex in the set
of all vertices in the graph.

With this data, the original cospan 𝑚
𝑓
−→ 𝐺

𝑔
←− 𝑛 can be viewed as the following

composition of cospans:

(𝑚
𝑓 ′

−→ 𝑁
id,ℎ←−− 𝑁 ⊗ �̃�) # (𝑁 ⊗ �̃� id⊗𝑠−−−→ 𝑁 ⊗ 𝐸 id⊗𝑡←−−− 𝑁 ⊗ �̃�) # (𝑁 ⊗ �̃� id,𝑘−−→ 𝑁

𝑔′

←− 𝑛)

This is well-defined because ⊗ is the coproduct in Hyp𝐶,Σ. By computing the
composition by pushout, it can be shown that the composite above is isomorphic
to the original cospan 𝑚

𝑓
−→ 𝐺

𝑔
←− 𝑛.

Now it must be verified that each cospan in the composite is in the image of
either J−KΣ or [−]Σ. The outer cospans are discrete so they are in the image of
[−]Σ by Corollary 8.61. The centre cospan is constructed from the identity and
cospans in the image of J−KΣ, so the entire cospan is in the image of J−KΣ.

The morphism 𝑢 can therefore be defined based on the actions of J−KΣ and
[−]Σ. This morphism is unique: although different orders can be assigned on the
edges, all the categories are symmetric monoidal so this is not an issue.

At first glance, the composite cospan described above might look confusing. As
mentioned, the central cospan �̃� → 𝐸 ← �̃� serves to ‘stack up’ the edges in some order,
all detached from each other. To make the entire cospan isomorphic to the original,
the connections of the sources and targets must be the same: the job of the two outer
cospans is to ‘join them up’ appropriately by connecting targets on the right to sources
on the left by going ‘over the top’ of the edges via the identity cospan 𝑁 → 𝑁 ← 𝑁 .

Example 8.63. Consider the following term and its cospan interpretation:

𝜙

𝜓

0 𝜙

𝜓

0
1

1
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Figure 8.7: The cospan of Example 8.63 in the form of Theorem 8.62

This cospan can be assembled into the form detailed in the above proof as shown
in Figure 8.7. By following the vertex maps, one can verify that this is indeed
isomorphic to the original cospan. The outermost components correspond to terms
in Frob and the innermost to a term in SΣ.

𝜙

𝜓

This term is equal to the original term by the Frobenius equations.

This result means that any two terms in SΣ + Frob which are equal by the Frobenius
equations can be mapped to isomorphic cospans of hypergraphs.

Example 8.64. Recall the following terms in Frob from Example 8.32, which we
showed were equal by the Frobenius equations.

=

By the isomorphism of Theorem 8.62, these two terms should map to the same
cospan of hypergraphs and, indeed, they both map to the following:

0

1

2

3
0 1 2 3

All of the Frobenius structure collapses into one vertex, much like when we consid-
ered the correspondence between Frobenius terms and finite sets.
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8.3.7 The coloured correspondence

The results for the monochromatic case also follow for the coloured case, so we can
restate the correspondence for coloured terms and hypergraphs.

Definition 8.65. Let J−K𝐶,Σ : S𝐶,Σ → Csp𝐷𝐶
(Hyp𝐶,Σ) be defined as ⟨⟨−⟩⟩Σ but as-

signing appropriate colours to the danging vertices.

Definition 8.66. Let ⟨⟨−⟩⟩𝐶,Σ : S𝐶,Σ + Frob𝐶 → Csp𝐷𝐶
(Hyp𝐶,Σ) be the copairing of

J−K𝐶,Σ and [−]𝐶,Σ.

Theorem 8.67 ([BGK+22a], Prop. 4.4). There is an isomorphism of 𝐶-coloured
PROPs H𝐶,Σ � Csp𝐷𝐶

(Hyp𝐶,Σ).

Proof. In the same manner as Theorem 8.62, but the components of the composite
cospan now have appropriately coloured vertices.

8.4 Symmetric monoidal terms

We have now seen that that cospans of hypergraphs are an excellent fit for reasoning
about terms in a freely generated hypergraph category. However, there are times we
might not have so much structure in our terms; indeed for our case of digital circuits we
only operate in a setting with a trace. This means that not every cospan of hypergraphs
will correspond to a valid term. Fortunately, Bonchi et al also characterised the cospans
of hypergraphs that correspond to symmetric monoidal terms without any additional
structure. We will use some of this machinery when it comes to tackling the traced
case.

8.4.1 Monogamous acyclic cospans

There are two features that distinguish vanilla symmetric monoidal terms from Frobe-
nius terms; wires cannot arbitrarily fork or join, and cycles may not be created. The
former is tackled by a condition on the connectivity of vertices.

Definition 8.68 (Degree [BGK+22b, Def. 12]). For a hypergraph 𝐹 ∈ Hyp, the
degree of a vertex 𝑣 ∈ 𝐹★ is a tuple (𝑖, 𝑜) where 𝑖 is the number of hyperedges with
with 𝑣 as a target, and 𝑜 is the number of hyperedges with 𝑣 as a source.
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Definition 8.69 (Monogamy [BGK+22b, Def. 13]). For a cospan 𝑚
𝑓
−→ 𝐹

𝑔
←− 𝑛 in

Csp𝐷 (HypΣ), let in(𝐹 ) and out(𝐹 ) be the image of 𝑓 and 𝑔 respectively. We call
the cospan 𝑚

𝑓
−→ 𝐹

𝑔
←− 𝑛 monogamous if 𝑓 and 𝑔 are mono and, for all vertices 𝑣 ,

the degree of 𝑣 is

(0, 0) if 𝑣 ∈ in(𝐹 ) ∧ 𝑣 ∈ out(𝐹 ) (0, 1) if 𝑣 ∈ in(𝐹 )
(1, 0) if 𝑣 ∈ out(𝐹 ) (1, 1) otherwise

Example 8.70. The following cospans of hypergraphs are monogamous:

𝑒 𝑒

The following cospans of hypergraphs are not monogamous:

𝑒 𝑒

Since our goal is to assemble monogamous cospans into a category, it is necessary
to check that the property is preserved by the various categorical operations.

Lemma 8.71 ([BGK+22b], Lem. 15). Identities and symmetries are monogamous.

Proof. The cospans involved are discrete and all vertices are in both interfaces, so
the cospans are monogamous.

Lemma 8.72 ([BGK+22b], Lem. 16). Monogamicity is preserved by composition.

Proof. Assume we compose two monogamous acyclic cospans 𝑚
𝑓
−→ 𝐹

𝑔
←− 𝑛 and

𝑛
ℎ−→ 𝐺

𝑘←− 𝑝. The interfaces remain mono as pushouts along monos are monos in
Hyp𝐶,Σ. The only altered vertices are those in the image of 𝑔 and ℎ, which are
merged pointwise; vertices in the image of 𝑔 have out-degree 0 and those in the
image of ℎ have in-degree 0 so the merged vertices have at most degree (1, 1).

Lemma 8.73 ([BGK+22b], Lem. 17). Monogamicity is preserved by tensor.
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Proof. The degrees of vertices are unaffected as tensor is by coproduct and only
vertices in the original interfaces will be in the new interfaces.

As seen in Example 8.70, monogamy makes no guarantees about cycles. Since
symmetric monoidal terms cannot have cycles, a notion of acyclicity must also be
enforced.

Definition 8.74 (Predecessor [BGK+22b, Def. 18]). A hyperedge 𝑒 is a predecessor
of hyperedge 𝑒′ if there exists a vertex 𝑣 in the sources of 𝑒 and the targets of 𝑒′.

Definition 8.75 (Path [BGK+22b, Def. 19]). A path between two hyperedges 𝑒
and 𝑒′ is a sequence of hyperedges 𝑒0, . . . , 𝑒𝑛−1 such that 𝑒 = 𝑒0, 𝑒′ = 𝑒𝑛−1, and for
each 𝑖 < 𝑛 − 1, 𝑒𝑖 is a predecessor of 𝑒𝑖+1. A subgraph 𝐻 is the start or end of a
path if it contains a vertex in the sources of 𝑒 or the targets of 𝑒′ respectively.

Since vertices are single-element subgraphs, one can also talk about paths from
vertices.

Definition 8.76 (Acyclicity [BGK+22b, Def. 20]). A hypergraph 𝐹 is acyclic if
there is no path from a vertex to itself. A cospan 𝑚 → 𝐹 ← 𝑛 is acyclic if 𝐹 is.

Example 8.77. The following cospans of hypergraphs are acyclic:

𝑒 𝑒

The following cospans of hypergraphs are not acyclic:

𝑒 𝑒 𝑒

Once again, for acyclicity to be a suitable condition on a category of cospans, it
needs to be preserved by categorical operations.

Lemma 8.78 ([BGK+22b, Prop. 21]). Identities and symmetries are acyclic.

Proof. By Lemma 8.71 as discrete hypergraphs cannot contain cycles.
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Lemma 8.79 ([BGK+22b, Prop. 21]). Acyclicity is preserved by tensor.

Proof. The original graphs are not altered.

When turning to composition, we run into a problem; composition of arbitrary
cospans may not preserve acyclicity. It is only when acyclicity is combined with
monogamy that composition can be safely performed.

Lemma 8.80 ([BGK+22b, Prop. 21]). Monogamous acyclicity is preserved by com-
position.

Proof. Assume we compose two monogamous acyclic cospans 𝑚
𝑓
−→ 𝐹

𝑔
←− 𝑛 and

𝑛
ℎ−→ 𝐺

𝑘←− 𝑝. A cycle cannot be created by composition because there cannot be a
path in 𝐹 that starts in the image of 𝑔 or a path in 𝐺 that ends in the image of ℎ,
because these vertices have out-degree and in-degree 0 respectively.

This shows that monogamous acyclic cospans of hypergraphs form a category.

Definition 8.81 ([BGK+22b]). Let MACsp𝐷 (HypΣ) be defined as the sub-PROP
of Csp𝐷 (HypΣ) containing the monogamous acyclic cospans of hypergraphs.

Example 8.82. The following cospans of hypergraphs are monogamous acyclic:

𝑒 𝑒

The following cospans of hypergraphs are not monogamous acyclic:

𝑒 𝑒 𝑒

Just like how cospans of hypergraphs correspond to string diagrams of Frobenius
terms, monogamous acyclic terms correspond to string diagrams of symmetric monoidal
terms. Bonchi et al showed this by proving that SΣ is isomorphic toMACsp𝐷 (HypΣ);
to do this they needed a few more ingredients. The first is a lemma showing that a
special class of subgraphs can always be ‘extracted’ from a parent graph.
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Definition 8.83 (Convex subgraph [BGK+22b, Def. 23]). A subgraph 𝐺 ⊆ 𝐹 is
convex if for any vertices 𝑣, 𝑣′ in 𝐺 and any path 𝑝 from 𝑣 to 𝑣′, every edge 𝑒 in 𝑝
is also in 𝐺 .

Lemma 8.84 (Decomposition [BGK+22b, Lem. 24]). For a monogamous acyclic
cospan 𝑚 → 𝐹 ← 𝑛 and and convex subgraph 𝐿 of 𝐺 , there exist 𝑘 ∈ N and a
unique cospan 𝑖 → 𝐿 ← 𝑗 such that 𝐺 can be factored as the following composite
of monogamous acyclic cospans:

(𝑚 → 𝐶1 ← 𝑘 + 𝑖) # (𝑘 + 𝑖 → 𝑘 + 𝐿 ← 𝑘 + 𝑖) # (𝑘 + 𝑗 → 𝐶2 ← 𝑛)

Essentially, we can always ‘pull out’ a convex subgraph of a monogamous acyclic
cospan in such a way that the remaining cospans are still monogamous acyclic. This is
an important part of characterising the image of J−KΣ.

Theorem 8.85 ([BGK+22b], Thm. 25). A cospan 𝑚 → 𝐹 ← 𝑛 is in the image of
J−KΣ if and only if 𝑚 → 𝐹 ← 𝑛 is monogamous acyclic.

Proof. The (⇒) direction is by induction on the structure of terms in SΣ: the
interpretation of generators is monogamous acyclic and the inductive cases are by
Lemmas 8.71, 8.73 and 8.78 to 8.80.

The (⇐) direction is by induction on the number of edges in 𝐹 . If there are
none, then 𝑚 → 𝐹 and 𝑛 → 𝐹 are bijections by monogamy so the term is in the
image of identities or symmetries in SΣ. For the inductive step, pick a single edge 𝑒.
This is a convex subgraph of 𝐹 , so 𝑚 → 𝐹 ← 𝑛 can be factored as in Lemma 8.84.
The edge 𝑒 has a label 𝜒 (𝑒) ∈ Σ, so the subgraph 𝑖 → 𝑒 ← 𝑗 is the result of J𝜒 (𝑒)KΣ.
Since the remaining cospans are monogamous acyclic by Lemma 8.84, they are in
the image of J−KΣ by inductive hypothesis, so the original cospan 𝑚 → 𝐹 ← 𝑛 is
also in the image of J−KΣ.

This shows that J−KΣ is full; to conclude the isomorphism we need to show that it
is also faithful. We know that the copairing J−KΣ + [−]Σ is faithful by Theorem 8.62, so
we just need to show the same is true for its components, using a result about pushouts
in PROP.

Definition 8.86 ([MS09], Defs. 3.1, 3.2). A functor 𝐹 : C → D satisfies the 3-for-
2 property if, for each triple of morphisms 𝑓 , 𝑔, ℎ ∈ D such that ℎ = 𝑔 ◦ 𝑓 , if any
two of 𝑓 , 𝑔 and ℎ are in the image of 𝐹 , then the third is also in the image of 𝐹 .
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Theorem 8.87 ([MS09], Thm. 3.3). Let 𝐹𝐴 : C → A and 𝐹𝐵 : C → B be faithful
functors such that the following diagram is a pushout.

C D

E B

𝐹D

𝐹E 𝐺D

𝐺E

⌝

Then, if 𝐹𝐴 and 𝐹𝐵 both satisfy the 3-for-2 property, then the functors 𝐺𝐴 and 𝐺𝐵
are also faithful.

To apply this result, we need to show that HypΣ is a pushout.

Definition 8.88. Let P be the sub-PROP of F containing the bijective functions.

A morphism in P is a permutation of wires. As all the functions are bijections, there
can only be morphisms𝑚 →𝑚.

Lemma 8.89. P is the initial object in PROP.

Proof. All the morphisms in P are identities and symmetries; the coloured PROP
morphism to any other PROP maps these to the corresponding constructs.

Subsequently, SΣ + Frob can be expressed as a pushout and the ‘3-for-2’ condition
applied to show the faithfulness of J−KΣ, using another well-known categorical lemma.

Lemma 8.90 ([Bor94], Prop. 2.8.2). If a category C has pushouts and an initial
object, then C also has coproducts.

Proof. Given objects 𝐴, 𝐵 ∈ C, the coproduct 𝐴 + 𝐵 is constructed as follows:

0 𝐴

𝐵 𝐴 + 𝐵

⌝

This is a coproduct due to the universal property of pushouts.

Proposition 8.91. J−KΣ : SΣ → Csp𝐷 (HypΣ) is faithful.
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Proof. From Theorem 8.62, we know that Csp𝐷 (HypΣ) � SΣ + Frob. Both SΣ and
Frob are objects of PROP, which has P as its initial object by Lemma 8.89. As
coproducts are pushouts from the initial object (Lemma 8.90), we can construct
the following diagram in PROP:

P Frob

SΣ SΣ + Frob

!2

!1 [−]Σ

J−KΣ

⌜

where !1 and !2 are the unique morphisms from P induced by initiality: these are
both faithful. !1 and !2 clearly satisfy the 3-for-2 condition as every morphism in P

is an isomorphism, so J−KΣ must also be faithful by Theorem 8.87.

Since ⟨⟨−⟩⟩Σ is full and faithful, we have reached our final destination.

Corollary 8.92 ([BGK+22b], Cor. 26). There is an isomorphism of PROPs SΣ �
MACsp𝐷 (HypΣ).

8.4.2 Coloured symmetric monoidal terms

To generalise the above results to the countably coloured case, the only modification is
to apply the 3-for-2 condition in the category of 𝐶-coloured PROPs.

Lemma 8.93. Let P̂ be the sub-PROP of F̂ containing only the bijective functions.

Lemma 8.94. For a countable set of colours 𝐶, P̂ is the initial object in CPROP𝐶 .

This means that we obtain correspondence results in the coloured case.

Proposition 8.95. ⟨⟨−⟩⟩𝐶,Σ : S𝐶,Σ → Csp𝐷𝐶
(Hyp𝐶,Σ) is faithful.

Corollary 8.96. For a countable set of colours 𝐶, there is an isomorphism of 𝐶-
coloured PROPs S𝐶,Σ � MACsp𝐷𝐶

(Hyp𝐶,Σ).

8.5 Traced terms

We have now seen the classes of cospans of hypergraphs that correspond to terms
in a hypergraph category and terms in a symmetric monoidal category. Terms in
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a symmetric traced monoidal category sit somewhere in the middle of these two:
cycles are permitted but wires cannot fork or join arbitrarily. Our contribution is to
characterise the cospans of hypergraphs that correspond to traced terms by weakening
the conditions of monogamy and acyclicity described in the previous section.

Definition 8.97. For a set of generators Σ, let TΣ be the traced PROP freely
generated over Σ.

First we will establish the morphism TΣ → Csp𝐷 (HypΣ) we will use to map traced
terms to cospans of hypergraphs. We could do this manually fairly easily, but this
would mean we would have to redo all the proofs in the previous section from scratch.
Instead we will reuse the previous results, by exploiting the correspondence between
traced and compact closed categories.

Lemma 8.98 ([RSW05], Prop. 2.8). Every hypergraph category is self-dual com-
pact closed.

Proof. In a hypergraph category, the cup on a given object is defined as
𝐴
𝐴 :=

𝐴
𝐴 and the cap as

𝐴
𝐴 := 𝐴

𝐴
. The snake equations follow by applying

the Frobenius equation and unitality:

= = = =

Lemma 8.99. TΣ is a subcategory of HΣ.

Proof. Since HypΣ is compact closed, it has a (canonical) trace. For TΣ to be a
subcategory of HΣ, every morphism of the former must also be a morphism on the
latter. Since the two categories are freely generated (with the trace constructed
through the Frobenius generators in the latter), all that remains is to check that
every morphism in TΣ is a unique morphism in HΣ, i.e. the equations of Frob do
not merge any together. This is trivial since the equations do not apply to the
construction of the canonical trace.

Definition 8.100. Let ⌊−⌋TΣ : TΣ → HΣ be defined as the inclusion functor induced
by Lemma 8.99.

Corollary 8.101. ⌊−⌋TΣ is faithful.
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To translate a term in TΣ into a cospan of hypergraphs, one uses the inclusion
functor ⌊−⌋TΣ to elevate to the Frobenius realm, before applying ⟨⟨−⟩⟩Σ from the previous
section to obtain a cospan of hypergraphs.

Corollary 8.102. ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ is faithful.

8.5.1 Partial monogamy

Since ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ is faithful, every traced term in TΣ has a unique corresponding
cospan of hypergraphs. This functor is not clearly not full; there are more terms in HΣ

than there are in TΣ. The next step is to characterise the image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ.
Since monogamous acyclic cospans correspond exactly to symmetric monoidal

terms, this property is too restrictive to be used as a setting for modelling traced
terms. Clearly, we can drop the acyclicity condition, as the trace can introduce cycles.
However, there is also a foible that arises with the monogamicity condition: although
wires are also not permitted to arbitrarily fork or join in a traced category, it is possible
to have a case where wires do not connect to any generators while also remaining
disconnected from the interfaces. This special case is the trace of the identity, which in
string diagrams is depicted as a closed loop Tr1

( )
= .

Remark 8.103. One might think a closed loop can be discarded, i.e. = ,
but this is not always the case, such as in FinVect𝑘 [Has97, Sec. 6.1].

These closed loops can be modelled as vertices disconnected from either interface.

Definition 8.104 (Partial monogamy). For a cospan 𝑚
𝑓
−→ 𝐹

𝑔
←− 𝑛 in Csp𝐷 (HypΣ),

let in(𝐹 ) be defined as the image of 𝑓 and let out(𝐹 ) be defined as the image of 𝑔.
A cospan 𝑚

𝑓
−→ 𝐹

𝑔
←− 𝑛 ∈ Csp𝐷 (HypΣ) is partial monogamous if 𝑓 and 𝑔 are mono

and, for all vertices 𝑣 , the degree of 𝑣 is

(0, 0) if 𝑣 ∈ in(𝐹 ) ∧ 𝑣 ∈ out(𝐹 ) (0, 1) if 𝑣 ∈ in(𝐹 )
(1, 0) if 𝑣 ∈ out(𝐹 ) (0, 0) or (1, 1) otherwise

Example 8.105. The following cospans of hypergraphs are partial monogamous:

𝑒 𝑒
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The following cospans of hypergraphs are not partial monogamous:

𝑒 𝑒

To use partial monogamous cospans as a setting for interpreting traced terms, they
must be assembled into a sub-PROP of Csp𝐷 (HypΣ).

Lemma 8.106. Identities and symmetries are partial monogamous.

Proof. Identities and symmetries are monogamous by Lemma 8.71 so they must
also be partial monogamous.

Lemma 8.107. Partial monogamy is preserved by composition.

Proof. By Lemma 8.72, composition preserves monogamicity. The only difference
between partial monogamous cospans and monogamous ones is that the former
may have cycles and vertices of degree (0, 0) not in the interfaces. However, since
neither of these can be interfaces they cannot be altered by composition, so partial
monogamy must also be preserved.

Lemma 8.108. Partial monogamy is preserved by tensor.

Proof. Tensor preserves monogamicity by Lemma 8.73, and as tensor does not
affect the degree of vertices then it preserves partial monogamy as well.

As partial monogamicity is preserved by both forms of composition, the partial
monogamous cospans themselves form a PROP.

Definition 8.109. Let PMCsp𝐷 (HypΣ) be the sub-PROP of Csp𝐷 (HypΣ) contain-
ing only the partial monogamous cospans of hypergraphs.

We must show that PMCsp𝐷 (HypΣ) is also traced, by making sure the canonical
trace does not create cospans that are not partial monogamous.

Theorem 8.110. The canonical trace is a trace on PMCsp𝐷 (HypΣ).
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Proof. Consider a partial monogamous cospan 𝑥 +𝑚
𝑓 +ℎ
−−−→ 𝐹

𝑔+𝑘
←−−− 𝑥 + 𝑛; we must

show that its trace 𝑚 ℎ−→ 𝐹 ′
𝑘←− 𝑛 is partial monogamous. For each vertex 𝑎 ∈ 𝑥 ,

𝑓 (𝑎) and 𝑔(𝑎) are merged together in the traced graph, summing their degrees. If
a vertex is in the image of ℎ or 𝑘, this is also the case in the traced cospan. We
consider the various cases:

• if 𝑓 (𝑎) = 𝑔(𝑎), then this vertex must have degree (0, 0); the traced vertex
will still have degree (0, 0) and will no longer be in the interface;

• if 𝑓 (𝑎) is also in the image of 𝑛 → 𝐹 and 𝑔(𝑖) is also in the image of 𝑚 → 𝐹 ,
then both 𝑓 (𝑎) and 𝑔(𝑎) have degree (0, 0); the traced vertex will still have
degree (0, 0) and be in both interfaces of the traced cospan;

• if 𝑓 (𝑎) is in the image of 𝑛 → 𝐹 , then 𝑓 (𝑖) has (0, 0) and 𝑔(𝑎) has degree
(1, 0), so the traced vertex has degree (1, 0) and is in the image of 𝑛 → 𝐹 ′;

• if 𝑔(𝑖) is in the image of 𝑚 → 𝐹 , then the above applies in reverse; and
• if neither vertex is in the image of𝑚 → 𝐹 and 𝑛 → 𝐹 , then the traced vertex

will have degree (1, 1) and be in the image of no interface.
In all these cases, partial monogamy is preserved.

Crucially, while we leave PMCsp𝐷 (HypΣ) in order to construct the trace using the
cup and cap, the resulting cospan is in PMCsp𝐷 (HypΣ).

8.5.2 The traced correspondence

Now that we have a traced sub-PROP of cospans of hypergraphs, it is time to show that
this particular sub-PROP is the one that corresponds to traced terms.

Theorem 8.111. A cospan𝑚 → 𝐹 ← 𝑛 is in the image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ if and only
if it is partial monogamous.

Proof. For the (⇒) direction, the generators of TΣ are mapped to monogamous
cospans by ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ, and partial monogamy is preserved by composition
(Lemma 8.107), tensor (Lemma 8.108), and trace (Theorem 8.110).

For the (⇐) direction, we show that any partial monogamous cospan
𝑚

𝑓
−→ 𝐹

𝑔
←− 𝑛 is in the image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ by constructing an isomorphic trace of

cospans, in which each component under the trace is in the image of J−KΣ. The
components of the new cospan are as follows:

• let 𝐿 be the discrete hypergraph containing vertices with degree (0, 0) that
are not in the image of 𝑓 or 𝑔;



179 Chapter 8. String diagrams as hypergraphs

• let 𝐸 be the hypergraph containing hyperedges of 𝐹 disconnected from each
other along with their source and target vertices;

• let 𝑉 be the discrete hypergraph containing all the vertices of 𝐹 ; and
• let 𝑆 and 𝑇 be the discrete hypergraphs containing the source and target

vertices of hyperedges in 𝐹 respectively, with the ordering determined by
some order 𝑒1, 𝑒2, · · · , 𝑒𝑛 on the edges in 𝐹 .

These parts can be composed to form the following composite:

𝐿 +𝑇 +𝑚
id+id+𝑓
−−−−−−→ 𝐿 +𝑉

id+id+𝑔
←−−−−− 𝐿 + 𝑆 + 𝑛 # 𝐿 + 𝑆 + 𝑛 id−→ 𝐿 + 𝐸 + 𝑛 id←− 𝐿 +𝑇 + 𝑛

We take the trace of 𝐿+𝑇 over this composite to obtain a cospan isomorphic to the
original. The components of the composite under the trace are all monogamous
acyclic so are in the image of J−KΣ by Theorem 8.85; this means there is a term
𝑓 ∈ SΣ such that J𝑓 KΣ is isomorphic to the original composite. The trace of 𝑓 is in
TΣ, so the trace of the composite is in the image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ.

As with the Frobenius case (Theorem 8.62), the large composite cospan may seem
confusing. We stack up the edges in the cospan �̃� → 𝐸 ← �̃�, but now join up the
connections by tracing the targets of the edges around, and shuffling them to the
correct source. The graph 𝐿 contains any identity loops.

Example 8.112. Consider the following term and its cospan interpretation:

𝜙 𝜓

0

𝜙 𝜓
0 1

1

We assemble the latter into the composite cospan of Theorem 8.111 as shown in
Figure 8.8. Both of the components under the trace correspond to terms in SΣ, so
applying the trace to this produces a term in TΣ which is equal to the original by
string diagrammatic deformations.

𝜙

𝜓

This shows that ⟨⟨−⟩⟩Σ ◦ ⌊−⌋TΣ is a full mapping from TΣ to PMCsp𝐷𝐶
(Hyp𝐶,Σ). As

it is both full and faithful, we have that there is an isomorphism between the category
of terms and the category of cospans of partial monogamous hypergraphs.
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Figure 8.8: The cospan of Example 8.112 in the form of Theorem 8.111

Corollary 8.113. TΣ � PMCsp𝐷 (HypΣ).

This means that PMCsp𝐷𝐶
(Hyp𝐶,Σ) is a suitable setting for interpreting terms in

TΣ: every term has a corresponding cospan of hypergraphs, and every cospan has a
corresponding term.

Example 8.114. The partial monogamous cospans from Example 8.105 are shown
below with their corresponding terms in TΣ.

𝑒
𝑒

𝑒
𝑒

8.5.3 Traced coloured terms

The results above all also hold for the coloured case by following the same strategy but
with the appropriate coloured PROPs.

Definition 8.115. For a countable set of colours 𝐶 and a set of generators Σ, let
T𝐶,Σ be the traced 𝐶-coloured PROP freely generated over Σ.

Lemma 8.116. T𝐶,Σ is a subcategory of H𝐶,Σ.

Definition 8.117. Let ⌊−⌋T𝐶,Σ : T𝐶,Σ → H𝐶,Σ be the inclusion functor induced by
Lemma 8.116.
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Corollary 8.118. ⌊−⌋T𝐶,Σ is faithful.

The partial monogamy condition works the same for coloured cospans, so the partial
monogamous cospans of coloured hypergraphs form a traced coloured category.

Definition 8.119. Let PMCsp𝐷𝐶
(Hyp𝐶,Σ) be the sub-PROP of Csp𝐷𝐶

(Hyp𝐶,Σ)
containing only the partial monogamous cospans of hypergraphs.

Theorem 8.120. The canonical trace is a trace on PMCsp𝐷𝐶
(Hyp𝐶,Σ).

The fullness proof then proceeds as before.

Theorem 8.121. A cospan is in the image of ⟨⟨−⟩⟩𝐶,Σ ◦ ⌊−⌋T𝐶,Σ if and only if it is
partial monogamous.

Corollary 8.122. T𝐶,Σ � PMCsp𝐷𝐶
(Hyp𝐶,Σ).

8.6 Hypergraphs for traced comonoid terms

By characterising the cospans of hypergraphs that correspond to traced terms, we
already have a setting in which we can model sequential circuit morphisms combina-
torially. But we can go further. When modelling Frobenius terms, we were modelling
them modulo the Frobenius equations; when interpreted as cospans of hypergraphs
the comonoid and monoid structures merged together into single vertices so we did
not need to consider the equations of associativity, commutativity or unitality.

In the realm of sequential circuits we also have monoid and comonoid structures,
but instead of forming a Frobenius structure they only form a bialgebra. The equations
of a bialgebra are different to those of a Frobenius algebra in how the monoid and
comonoid interact. Compare the two Frobenius equations with the bialgebra equation
shown below:

= = =

In a Frobenius setting, it is possible to derive the bialgebra equation BCM from the
Frobenius equations combined with the equations of monoids and comonoids.
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Lemma 8.123. In HΣ, = .

Proof.

=
(CC)
=

(FCM2)
=

(FCM1)
=

(MA)
=

(MC)
=

(FCM1)
=

(FMC)
=

This is clear from the hypergraph interpretation, as all four terms involved map to
the same (discrete) cospan of hypergraphs.

[ ]
Σ

=

[ ]
Σ

=
[ ]

Σ
=

[ ]
Σ

=

0

1

2

3
0 1 2 3

However, the converse does not hold: it is not possible to derive the Frobenius
equations from the bialgebra equation without having one of the Frobenius equations
to begin with. This poses a problem: we want to use Csp𝐷𝐶

(Hyp𝐶,Σ) as a setting for
rewriting digital circuits, but as it by default contains a Frobenius structure, too many
equations would hold. Since the issue only arises with the interactions between the
monoid and the comonoid, we can use cospans of hypergraphs to reason modulo the
equations of just one of the two structures.

Remark 8.124. Alas, we cannot claim to have pioneered the idea of interpreting
terms with just a monoid or comonoid structure as cospans of hypergraphs [FL23;
MPZ23]. What we bring to the table is studying how such terms interact with the
trace: does removing acyclicity lead to any degeneracies?

In the case of sequential circuits, it makes sense to focus on the comonoid structure,
as forking wires is far more of a natural concept than joining them. To characterise
categories of terms with a comonoid structure, we must first define the monoidal theory
of cocommutative comonoids.



183 Chapter 8. String diagrams as hypergraphs

= (CU) = (CA) = (CC)

Figure 8.9: Equations ECComon of a commutative comonoid

Definition 8.125. Let (ΣCComon, ECComon) be the symmetric monoidal theory of
cocommutative comonoids, with ΣCComon := { , } and ECComon defined
as in Figure 8.9. We write CComon := SΣCComon,ECComon .

From now on, we write ‘comonoid’ to mean ‘cocommutative comonoid’.
When identifying the cospans of hypergraphs that correspond to terms with traced

comonoid structure, the notion of monogamy will once again need to be modified.
Partial monogamy is now too strong, as this means wires cannot fork. Weakening
to no monogamy at all is too much, as we do not want wires to join as well as fork.
Effectively, vertices need to be ‘monogamous on one side’.

Definition 8.126 (Partial left-monogamy). For a cospan 𝑚
𝑓
−→ 𝐻

𝑔
←− 𝑛, we say it

is partial left-monogamous if 𝑓 is mono and, for all vertices 𝑣 ∈ 𝐻★, the degree of
𝑣 is (0,𝑚) if 𝑣 ∈ 𝑓★ and (0,𝑚) or (1,𝑚) otherwise, for some 𝑚 ∈ N.

Partial left-monogamy is a weakening of partial monogamy that allows vertices to
have multiple ‘out’ connections, which represent the use of the comonoid structure to
fork wires; vertices must still only have one ‘in’ connection.

Example 8.127. The following cospans are partial left-monogamous:

𝑒 𝑒

The following cospans are not partial left-monogamous:

𝑒 𝑒

Remark 8.128. As with the vertices not in the interfaces with degree (0, 0) in the
vanilla traced case, the vertices not in the interface with degree (0,𝑚) allow for the
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interpretation of terms such as Tr
( )

.

[
Tr

( )]
Σ
= Tr

©«
0 1 20

2

1 ª®®¬ =
2 2

We must ensure that partial left-monogamy is preserved by the categorical opera-
tions, so that partial left-monogamous cospans form another PROP.

Lemma 8.129. Identities and symmetries are partial left-monogamous.

Proof. Again by Lemma 8.71, identities and symmetries are monogamous so they
are also partial left-monogamous.

Lemma 8.130. Given two partial left-monogamous cospans 𝑚 → 𝐹 ← 𝑛 and
𝑛 → 𝐺 ← 𝑝, the composition (𝑚 → 𝐹 ← 𝑛) # (𝑛 → 𝐺 ← 𝑝) is partial left-
monogamous.

Proof. Only the vertices in the image of 𝑛 → 𝐺 have their in-degree modified; they
gain the in-tentacles of the corresponding vertices in the image of 𝑛 → 𝐹 . Initially
the vertices in 𝑛 → 𝐺 have in-degree 0 by partial monogamy; they will gain at most
one in-tentacle from vertices in 𝑛 → 𝐹 as each of these vertices has in-degree 0 or
1 and 𝑛 → 𝐺 is mono. So the composite graph is partial left-monogamous.

Lemma 8.131. Given two partial left-monogamous cospans 𝑚 → 𝐹 ← 𝑛 and
𝑝 → 𝐺 ← 𝑞, the tensor (𝑚 → 𝐹 ← 𝑛) ⊗ (𝑛 → 𝐺 ← 𝑝) is partial left-monogamous.

Proof. The elements of the original graphs are unaffected.

This means we can assemble the partial left-monogamous cospans of hypergraphs
into the desired sub-PROP.

Definition 8.132. Let PLMCsp𝐷 (HypΣ) be the sub-PROP of Csp𝐷 (HypΣ) con-
taining only the partial left-monogamous cospans of hypergraphs.

As this PROP is not restricted to acyclic cospans like those used for just terms with
a (co)monoid structure, it has the additional structure of a trace.
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Proposition 8.133. The canonical trace is a trace on PLMCsp𝐷 (HypΣ).

Proof. We must show that for any vertices in the image of 𝑥 + 𝑛 → 𝐾 merged
by the canonical trace, at most one of them can have in-degree 1. This follows
because anything in the image of 𝑥 +𝑚 → 𝐾 must have in-degree 0, and 𝑥 +𝑚 → 𝐾

is mono so it cannot merge vertices in the image of 𝑥 + 𝑛 → 𝐾 .

We now have the setting in which we will model terms with a comonoid structure.
To actually define the mapping from TΣ + CComon we will reuse some ingredients
from the previous sections.

Definition 8.134. Let ⌊−⌋C : CComon→ Frob be the embedding of CComon into
Frob, and let ⌊−⌋Σ : TΣ + CComon→ SΣ + Frob be the copairing ⌊−⌋TΣ + ⌊−⌋C.

Corollary 8.135. ⌊−⌋C and ⌊−⌋TΣ are faithful.

After translating from TΣ + CComon to SΣ + Frob, we can then use the previously
defined PROP morphism ⟨⟨−⟩⟩Σ to obtain a cospan of hypergraphs; as before. To show
that partial left-monogamy is the correct notion to characterise terms in a traced
comonoid setting, it is necessary to ensure that the image of these PROP morphisms
actually lands in PLMCsp𝐷 (HypΣ). First we verify that this

Lemma 8.136. The image of [−]Σ ◦ ⌊−⌋C is in PLMCsp𝐷 (HypΣ).

Proof. This is straightforward by inspecting the cases.

To show the correspondence between TΣ +CComon and PLMCsp𝐷 (HypΣ), we use
a similar strategy to Theorem 8.111.

Lemma 8.137. Given a discrete hypergraph 𝑋 ∈ HypΣ, any cospan 𝑚
𝑓
−→ 𝑋 ← 𝑛

with 𝑓 mono is in the image of [−]Σ ◦ ⌊−⌋C.

Proof. By definition of [−]Σ ◦ ⌊−⌋C.

Theorem 8.138. A cospan of hypergraphs is in the image of TΣ + CComon �
PLMCsp𝐷 (HypΣ) if and only if it is partial left-monogamous.
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Proof. It suffices to show that a cospan 𝑚 → 𝐹 ← 𝑛 in PLMCsp𝐷 (HypΣ) can be
decomposed into a traced cospan in which every component under the trace is in the
image of either ⟨⟨−⟩⟩Σ or [−]Σ ◦ ⌊−⌋C. This is achieved by taking the construction
of Theorem 8.111 and allowing the first component to be partial left-monogamous;
by Lemma 8.137 this is in the image of [−]Σ ◦ ⌊−⌋C. The remaining components
remain in the image of J−KΣ. Subsequently, the entire traced cospan must be in
the image of ⟨⟨−⟩⟩Σ ◦ ⌊−⌋Σ.

The composite cospan for the comonoid correspondence is broadly the same as that
of the traced correspondence, but now the term derived from the discrete component
may additionally contain the comonoid and the counit.

As ⟨⟨−⟩⟩Σ and ⌊−⌋Σ are faithful, we immediately find the following.

Corollary 8.139. There is an isomorphism of coloured PROPs TΣ + CComon �
PLMCsp𝐷 (HypΣ).

This means the PROP PLMCsp𝐷 (HypΣ) of partial left-monogamous cospans of
hypergraphs is suitable for modelling terms in TΣ + CComon: traced terms with a
cocommutative comonoid structure.

Example 8.140. The partial monogamous cospans from Example 8.127 are shown
below with their corresponding terms in TΣ + CComon.

𝑒
𝑒

𝑒 𝑒

8.6.1 Traced coloured comonoids

As usual, the results of the monochromatic setting generalise in a straightforward
manner to the multicoloured setting. As with Frob, a multicoloured version of CComon
is defined as a coproduct in CPROP.

Definition 8.141. For a countable set 𝐶, let CComon𝐶 := Σ𝑐∈𝐶CComon.

Partial left-monogamy follows as before, so we have a traced coloured PROP.

Definition 8.142. Let PLMCsp𝐷𝐶
(Hyp𝐶,Σ) be the sub-PROP of Csp𝐷𝐶

(Hyp𝐶,Σ)
containing only the partial left-monogamous cospans of hypergraphs.
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Proposition 8.143. The canonical trace is a trace on PLMCsp𝐷𝐶
(Hyp𝐶,Σ).

As we embedded CComon into Frob, we embed CComon𝐶 into Frob𝐶 .

Definition 8.144. Let ⌊−⌋C𝐶 : CComon𝐶 → Frob𝐶 be the embedding of CComon𝐶
into Frob𝐶 , and let ⌊−⌋𝐶,Σ : T𝐶,Σ + CComon𝐶 → S𝐶,Σ + Frob𝐶 be the copairing of
⌊−⌋T𝐶,Σ and ⌊−⌋C𝐶 .

Corollary 8.145. ⌊−⌋C𝐶 and ⌊−⌋T𝐶,Σ are faithful.

The monochromatic results can then be lifted to the coloured case in the same way.

Theorem 8.146. A cospan of hypergraphs is in the image of T𝐶,Σ + CComon𝐶 �
PLMCsp𝐷𝐶

(Hyp𝐶,Σ) if and only if it is partial left-monogamous.

Corollary 8.147. There is an isomorphism of coloured PROPs T𝐶,Σ +CComon𝐶 �
PLMCsp𝐷𝐶

(Hyp𝐶,Σ).



Chapter 9

Graph rewriting

String diagrams equal by topological deformations or by the equations of commutative
comonoids can be translated into isomorphic cospans of hypergraphs. This already
gives us a straightforward way to interpret these structures computationally. However,
it is very rare that we will only be working modulo the equations of traced comonoids;
the equations of some monoidal theory will also be in play. Since an equation 𝑓 =

𝑔 may actually change the components of the term, there is no reason for the
interpretations ⟨⟨

⌊
𝑓

⌋
Σ
⟩⟩Σ and ⟨⟨

⌊
𝑔

⌋
Σ
⟩⟩Σ to be isomorphic. Instead, to reason

about cospans of hypergraphs modulo the equations of some monoidal theory the
graphs must be rewritten.

Traditional term rewriting is inherently one-dimensional, which can be somewhat
restrictive as it enforces that each generator must have a coarity of 1. On the other hand,
string diagram rewriting is an example of higher dimensional rewriting, which has
its roots in Burroni’s work on polygraphs [Bur93]. This higher-dimensional approach
briefly entered the world of digital circuits in Lafont’s work on Boolean circuits [Laf03],
which used a rudimentary form of graphical syntactic rewriting. However, in this
approach even the axioms of SMCs needed to be applied explicitly, greatly hampering
the tractability of the system.

It is only more recently that rewriting string diagrams modulo the axioms of SMCs
using graph rewriting has been studied, starting with the aforementioned string graphs
of Dixon and Kissinger [DDK10; Kis12; DK13]. This only considered rewriting in the
presence of a trace rather than considering any additional structure, but nevertheless
was successfully implemented in a proof assistant called Quantomatic [KZ15]. Our
work continues to follow that of Bonchi et al [BGK+22a; BGK+22b] on rewriting
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with hypergraphs, which has several advantages. Unlike string graphs, the category
of hypergraphs is adhesive [LS04] which affords it some nice rewriting properties.
Moreover, rewriting modulo Frobenius structure (or even just monoid or comonoid
structure) can reveal ‘hidden’ rewrites that may not be seen with the naked eye. In this
chapter, we will explore how to extend this to the traced and traced comonoid case.

Remark 9.1. The content of this section is a revised version of [GK23, Sec. 5].

9.1 Double pushout rewriting

Let us first consider how equations in a monoidal theory are applied to terms without
any sort of special graph interpretation.

Definition 9.2 (Rewriting system). A rewriting system R for a PROP C is a set
of rewrite rules

〈
𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
. Given terms 𝑔𝑚 𝑛 and ℎ𝑚 𝑛 in TΣ

we write 𝑔 ⇒R ℎ if there exists a rewrite rule
〈

𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
in

R along with terms 𝑐1𝑚 𝑖
𝑘

and 𝑐2
𝑗

𝑛
𝑘

in SΣ such that

𝑔 = 𝑐1 𝑙 𝑐2 and ℎ = 𝑐1
𝑟 𝑐2

by axioms of STMCs. We write 𝑔𝑚 𝑛 ⇒★
R ℎ𝑚 𝑛 for a sequence of such

rules.

Since Frobenius terms are symmetric monoidal terms equipped with additional
generators, this definition is also suitable for rewriting modulo Frobenius structure. For
traced terms some tweaking will be required; this will be detailed in the next section.

Rules in a rewrite system are directed, whereas equations are not. Of course, it is
straightforward to derive a rewriting system from an equational theory by adding the
reductions for both directions of each equation.

Definition 9.3 ([BGK+22b, Sec. 2.4]). For a monoidal theory (Σ, E), let RE be
the rewriting system containing rules

〈
𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
and

〈
𝑟𝑖 𝑗 , 𝑙𝑖 𝑗

〉
for each 𝑙𝑖 𝑗 = 𝑟𝑖 𝑗 ∈ E .

Proposition 9.4 ([BGK+22b, Prop. 2.18]). For two terms 𝑔 , ℎ ∈ TΣ,E ,
𝑔 = ℎ if and only if 𝑔 ⇒★

RE
ℎ .
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The equivalent for graphs is graph rewriting; we use double pushout (DPO) rewriting,
which was introduced in the early 70s by Ehrig, Pfender, and Schneider [EPS73] as
one of the first algebraic approaches to graph rewriting. First defined for graphs, it has
since been generalised for a variety of combinatorial structures.

A double pushout rewrite rule is defined by mapping to the left and right hand side
of a rule from their shared interface.

Definition 9.5 (Span). A span is a pair of morphisms 𝐴→ 𝐵 and 𝐴→ 𝐶, usually
written 𝐵 ← 𝐴→ 𝐶.

Definition 9.6 (DPO rule). Given two interfaced hypergraphs 𝑖 𝑎1−→ 𝐿
𝑎2←− 𝑗 and

𝑖
𝑏1−→ 𝑅

𝑏2←− 𝑗 in Csp𝐷 (HypΣ), their corresponding DPO rule is a span in HypΣ
defined as 𝐿

[𝑎1,𝑎2]←−−−−− 𝑖 + 𝑗
[𝑏1,𝑏2]−−−−−→ 𝑅.

A DPO rule is a span in the category of hypergraphs HypΣ, as we will identify
occurrences of rules with hypergraph homomorphisms.

We will use an extension of DPO rewriting, known as double pushout rewriting
with interfaces (DPOI rewriting) [BGK+17]. This framework enjoys the Knuth-Bendix
property [KB70]; graph rewriting is confluent when all critical pairs are joinable. This
means that a rewriting system is confluent if, whenever there is an overlap of rules
in a graph 𝐺 such that 𝐺 could rewrite to 𝐻 or 𝐻 ′, there exists another graph 𝐾 and
rewrites such that 𝐻 and 𝐻 ′ rewrite to 𝐾 .

Definition 9.7 (DPOI rewriting). Let R be a set of DPO rules. Then, for mor-
phisms 𝐺 ←𝑚 + 𝑛 and 𝐻 ←𝑚 + 𝑛 in Hyp𝐶,Σ, there is a rewrite 𝐺 ⇝R 𝐻 if there
exist a span 𝐿 ← 𝑖 + 𝑗 → 𝑅 ∈ R and cospan 𝑖 + 𝑗 → 𝐶 ←𝑚 + 𝑛 ∈ HypΣ such that
the following diagram commutes.

𝐿 𝑖 + 𝑗 𝑅

𝐺 𝐶 𝐻

𝑚 + 𝑛

⌝ ⌜

The first thing to note is that the graphs all have a single interface 𝐺 ←𝑚 + 𝑛; to
perform graph rewriting on graphs in HypΣ, interfaces of terms in SΣ + Frob must be
‘folded’ into one using the compact closed structure.
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Definition 9.8 ([BGK+22b]). Let ⌜−⌝ : SΣ + Frob→ SΣ + Frob be defined as hav-

ing action 𝑓𝑚 𝑛 ↦→ 𝑓

𝑚

𝑛 .

The image of ⌜−⌝ is not in the image of ⌊−⌋TΣ or ⌊−⌋Σ any more, as inputs of
generators may now connect to outputs of the term. This is not an issue, as long as we
‘unfold’ the interfaces once rewriting is completed.

Proposition 9.9 ([BGK+22a, Prop. 4.8]). For a term 𝑓𝑚 𝑛 ∈ SΣ + Frob, if

⟨⟨ 𝑓 ⟩⟩Σ =𝑚
𝑖−→ 𝐹

𝑜←− 𝑛 then ⟨⟨⌜ 𝑓 ⌝⟩⟩Σ is isomorphic to 0 −→ 𝐹
𝑖+𝑜←−−𝑚 + 𝑛.

Proof. Straightforward by definition of the cup using the Frobenius structure.

We are now ready to begin rewriting. Say we have a DPO rule 𝐿 ← 𝑖 + 𝑗 → 𝑅

and a larger cospan of hypergraphs𝑚 → 𝐺 ← 𝑛. We suggestively assemble them as
follows, using the transformation above to ‘convert’ the latter cospan to one with a
single interface.

𝐿 𝑖 + 𝑗 𝑅

𝐺

𝑚 + 𝑛

To identify an occurrence of 𝐿 in 𝐺 , we use a hypergraph homomorphism 𝐿 → 𝐺

to identify the components that will be rewritten.

𝐿 𝑖 + 𝑗 𝑅

𝐺

𝑚 + 𝑛

We now need to identify the context in which the rewrite will occur. Essentially,
the context is the ‘graph 𝐺 with 𝐿 cut out’, which can be formally defined with what is
known as a pushout complement. This can be thought of as a ‘reverse pushout’.

Definition 9.10 (Pushout complement). Let 𝑖+ 𝑗 → 𝐿 → 𝐺 ←𝑚+𝑛 be morphisms
in Hyp𝐶,Σ; their pushout complement is an object 𝐶 with morphisms 𝑖+ 𝑗 → 𝐶 → 𝐺

such that 𝐿 → 𝐺 ← 𝐶 is a pushout and the diagram below commutes.
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𝐿 𝑖 + 𝑗

𝐺 𝐶

𝑚 + 𝑛

⌝

𝑔

Is a pushout complement always guaranteed to exist for any morphism 𝐿 → 𝐺?
The answer is no; this will be discussed at length in the next section. If a pushout
complement does exist, it specifies the rewriting context. This leaves us a hole in which
the other side of the rewrite rule can be glued in.

𝐿 𝑖 + 𝑗 𝑅

𝐺 𝐶

𝑚 + 𝑛

⌝

To actually compute the rewritten graph, we perform another pushout to retrieve
the complete DPO diagram. Note that the interface 𝑚 + 𝑛 of the original graph is
preserved throughout the process; we can use ⌜−⌝ to return to a cospan of the form
𝑚 → 𝐻 ← 𝑛.

𝐿 𝑖 + 𝑗 𝑅

𝐺 𝐶 𝐻

𝑚 + 𝑛

⌝ ⌜

Example 9.11. Consider the following term rewrite rule and its interpretation as
a DPO rule.

〈
𝑒1 , 𝑒2

〉
𝑒1

10 0 1
𝑒2

10

Consider the term 𝑒1𝑒3 𝑒3 ; a DPO rewrite is performed as follows:
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𝑒1
10 0 1

𝑒2
10

𝑒3
2

𝑒1
0

𝑒3
31

𝑒3
2 0

𝑒3
31

𝑒3
2

𝑒2
0

𝑒3
31

2 3

As expected, the result is the term 𝑒2𝑒3 𝑒3 .

9.2 Pushout complements

While computing the rewritten graph from a context is a deterministic procedure,
finding the pushout complement specifying said context is a little more subtle.

Definition 9.12. A morphism 𝑖 + 𝑗 → 𝐿 → 𝐺 is called a matching if it has at least
one pushout complement.

If there is no pushout complement, there is no possible rewrite, so it is important to
know when one exists. Fortunately, there are two well-known conditions for existence
of pushout complements when rewriting with hypergraphs. The first ensures that all
the sources and targets of a hyperedge are present in a candidate context.

Definition 9.13 (No-dangling-hyperedges condition [CMR+97], Prop. 3.3.4).
Given morphisms 𝑖 + 𝑗 𝑎−→ 𝐿

𝑓
−→ 𝐺 in HypΣ, they satisfy the no-dangling condi-

tion if, for every hyperedge not in the image of 𝑓 , each of its source and target
vertices is either not in the image of 𝑓 or are in the image of 𝑓 ◦ 𝑎.

Example 9.14. The following pair of morphisms does not satisfy the no-dangling-
hyperedges condition.

0 1 𝑎−→
0 1

𝑒1

2 3
𝑓
−→

0 1
𝑒1

2 3
𝑒2

To obtain the pushout complement we ‘cut out’ any vertices in the rightmost graph
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which are in the image of 𝑓 but not the image of 𝑓 ◦𝑎, as the latter are the interfaces
of the rule. However, if we cut out the vertices labelled 2 and 3, the edge 𝑒2 will be
left with ‘dangling’ tentacles connected to no vertices, a malformed hypergraph.

0 1
𝑒1

2 3
0 1

0 1
𝑒1

2 3
𝑒2

0 1

𝑒2

𝑓

𝑎

The second condition enforces that merging of vertices is well-defined.

Definition 9.15 (No-identification condition [CMR+97], Prop. 3.3.4). Given mor-
phisms 𝑖 + 𝑗 𝑎−→ 𝐿

𝑓
−→ 𝐺 in HypΣ, they satisfy the no-identification condition if any

two distinct elements merged by 𝑓 are also in the image of 𝑓 ◦ 𝑎.

Example 9.16. The following does not satisfy the no-identification condition.

0 1 𝑎−→
0 1

𝑒1

2 3
𝑒2

𝑓
−→

0 1
𝑒1

2 3

𝑒2

When trying to construct a pushout complement, the edge 𝑒2 will be removed.
However, since vertices 2 and 3 are not mapped from the rule interfaces, there is
no reason that a pushout would glue them together so that they are merged in the
final graph. Therefore no pushout complement can exist.
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0 1
𝑒1

2 3
𝑒2

0 1

0 1
𝑒1

2 3

𝑒2

0 1

2 3

𝑓

𝑎

With these two conditions, we can establish when pushout complements exist for a
pair of hypergraph homomorphisms. If there is a pushout complement, then there is
an opportunity for a rewrite.

Proposition 9.17 ([CMR+97], Prop. 3.3.4). The morphisms 𝑖 + 𝑗 → 𝐿 → 𝐺 ∈
HypΣ have at least one pushout complement if and only if they satisfy the no-
dangling and no-identification conditions.

It is all very well knowing if there is at least one pushout complement, but what
about when there is exactly one pushout complement? When this is the case, the rewrite
is uniquely specified for a given rule and matching. To answer this question, we must
examine a class of categories to which HypΣ belongs, known as adhesive categories.
One can think of these as categories in which graph rewriting ‘plays nicely’.

To define what an adhesive category is, we must first define a special kind of pushout
that interacts in a particular way with other pushouts and pullbacks.

Definition 9.18 (van Kampen square [LS05, Def. 2.1]). Let there be a commuta-
tive cube as drawn below.

𝐺 𝐻

𝐸 𝐹

𝐴 𝐵

𝐶 𝐷

The bottom face of the cube (𝐴𝐵𝐶𝐷) is called a van Kampen (VK) square if it is
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a pushout and, when the back and left faces (𝐸𝐹𝐴𝐵 and 𝐺𝐸𝐶𝐴) are pullbacks, the
front and right faces (𝐺𝐻𝐶𝐷 and 𝐹𝐻𝐵𝐷) are pullbacks if and only if the top face
(𝐺𝐻𝐸𝐹 ) is a pushout.

In an adhesive category, VK squares arise when performing pushouts of monomor-
phisms. This is important for graph rewriting because monomorphisms in categories of
graphs generally correspond to embeddings; graph homomorphisms where subgraphs
can be ‘cut out’ of a graph without causing the rest of the graph to become degenerate.

Definition 9.19. Given a span 𝐴
𝑓
←− 𝐵

𝑔
−→ 𝐶 with a pushout 𝐵 → 𝐷 ← 𝐶, the

pushout is called a pushout along a monomorphism if 𝑓 or 𝑔 is a monomorphism.

Definition 9.20 (Adhesive category [LS05, Def. 3.1]). A category is adhesive if
• it has pushouts along monomorphisms;
• it has pullbacks; and
• pushouts along monomorphisms are VK squares.

The definition of van Kampen square and subsequently adhesive categories may
look a bit confusing to the uninitiated. Succinctly, objects in an adhesive category can
be ‘split apart’ and ‘glued together’ by using pushouts and pullbacks.

Example 9.21. A natural example of an adhesive category is Set, which has
pushouts and pullbacks. To get some idea how the van Kampen condition holds,
consider the following commutative cube in Set, adapted from [Kis12, Sec. 4.3].

𝐴′ 𝑋

𝐴′ ∩ 𝐵′ 𝐵′

𝐴 ∩ 𝐵 𝐵

𝐴 𝐴 ∪ 𝐵

𝑓𝐴 𝑓𝑓𝐵

The bottom face is a pushout, and since 𝐴∪𝐵 → 𝐴 and 𝐴∪𝐵 → 𝐵 are monomor-
phisms, this is a pushout along a monomorphism. Furthermore, the left and back
faces are pullbacks because 𝑓𝐴 and 𝑓𝐵 agree on the intersection of 𝐴′ and 𝐵′.

Now we must show that the front and right faces are pullbacks if and only if the
top face is a pushout. For the front and right faces to be pullbacks, 𝑓 must restrict
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to 𝑓𝐴 and 𝑓𝐵 along 𝐴 and 𝐵. This can only be the case if and only if 𝑋 = 𝐴′ ∩ 𝐵′,
in which case the top square must be a pushout.

Proving the necessary van Kampen condition might be tricky. Fortunately, adhe-
sivity is preserved by several categorical constructions, so by using Set as a base it is
straightforward to show that more complicated categories are also adhesive.

Proposition 9.22 ([LS05], Prop. 3.5). For an adhesive category C and object 𝐶
of C, C ↓ 𝐶 is adhesive. Given another category X , [X , C] is also adhesive.

Corollary 9.23. HypΣ and Hyp𝐶,Σ are adhesive.

Proof. HypΣ and Hyp𝐶,Σ are defined as the slice of a functor category over Set, so
they are adhesive.

The key property adhesive categories enjoy is that, for certain DPO rules, a pushout
complement is uniquely defined for a given matching.

Definition 9.24 (Left-linear rules). A DPO rule 𝐿
𝑓
←− 𝑖 + 𝑗 → 𝑅 is called left-linear

if 𝑓 is mono.

Theorem 9.25 ([LS05], Lem. 4.5). In an adhesive category, if a pushout comple-
ment exists for morphisms 𝐼 𝑚−→ 𝐿 → 𝐺 and𝑚 is a monomorphism, then it is unique
up to isomorphism.

Proof. The proof relies on several non-trivial lemmas that hold in adhesive cate-
gories in addition to some other results about pushouts. We refer the interested
reader to [Kis12, Lems. 4.3.6 - 4.3.9] for the grisly details.

However, there may be useful rewrite rules which are not left-linear.

Example 9.26. Consider the following (reasonable) rule.

〈
, 𝑒

〉 0 1 ← 0 1 → 0 1
𝑒1

. Now consider applying the above rule to the term 𝑒2 𝑒3 using the following
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pair of morphisms:

0 1 → 0 1 → 𝑒3
0 1

𝑒2

This matching yields the following pushout complements and rewrites:

𝑒3
0

𝑒2
1 → 𝑒3

0
𝑒2

1
𝑒1

𝑒3
0

𝑒2
1 → 𝑒3

0
𝑒2

1
𝑒1

𝑒3
1

𝑒2

0
→

𝑒3
1

𝑒2

0
𝑒1

𝑒3
0

𝑒2

1
→

𝑒2
0

𝑒3

1
𝑒1

𝑒3
0 1

𝑒2 →
𝑒3

0 1
𝑒2

𝑒1

One might think this is undesirable, but these multiple rewrites actually arise due
to the presence of the Frobenius algebra.

Example 9.27. Each of the five complements and rewrites in Example 9.26 cor-
responds to a valid application of equations on terms, perhaps modulo Frobenius
equations. The first complement 𝑒3

0
𝑒2

1
𝑒1 is the ‘obvious’ one:

𝑒2 𝑒3 = 𝑒2 𝑒3𝑒1

The complement 𝑒3
0

𝑒2
1

𝑒1 uses the compact closed structure:

𝑒2 𝑒3 =
𝑒2

𝑒3
=

𝑒2

𝑒3

𝑒1
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The complement
𝑒3

1
𝑒2

0
𝑒1

uses the unitality of the monoid:

𝑒2 𝑒3 = 𝑒2
𝑒3 = 𝑒2

𝑒3
𝑒1

The complement
𝑒2

0
𝑒3

1
𝑒1

uses the counitality of the comonoid:

𝑒2 𝑒3 = 𝑒3
𝑒2 = 𝑒3

𝑒2
𝑒1

The complement
𝑒3

0 1
𝑒2

𝑒1
uses the Frobenius equations:

𝑒2 𝑒3 = 𝑒2
𝑒3 =

𝑒2 𝑒3
=

𝑒2 𝑒3
=

𝑒2
𝑒3

=

𝑒2 𝑒3

=

𝑒2 𝑒3

𝑒1

The problem of finding each possible pushout complement has already been tackled
for hypergraphs [HJKS11]; they can be enumerated as quotients of an ‘exploded’ context.

Definition 9.28 ([HJKS11, Const. 1]). For morphisms 𝑖 + 𝑗 → 𝐿
𝑓
−→ 𝐺 in HypΣ,

their exploded context is the graph 𝑖 + 𝑗 + �̃� where �̃� constructed as follows:
1. for each vertex 𝑣 ∈ 𝐺 not in the image of 𝑓 , add one vertex to �̃� ;
2. for each hyperedge 𝑒 ∈ 𝐺 not in the image of 𝑓 , add one hyperedge to �̃� ;
3. for each hyperedge 𝑒 ∈ �̃� , let the 𝑖-th source 𝑠𝑖 (𝑒) be defined as 𝑠𝑖 (ℎ) if
𝑠𝑖 (ℎ) ∈ �̃� or a new, fresh vertex otherwise;

4. repeat the above for the targets.

Pushout complements can then be computed as quotients of this exploded context.
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Proposition 9.29 ([HJKS11] (Props. 3-4), [BGK+22a]). For a pair of morphisms
𝑖 + 𝑗 → 𝐿 → 𝐺 in HypΣ, let 𝑖 + 𝑗 + �̃� be its exploded context. Define a map
𝑞 : 𝑖 + 𝑗 + �̃� → 𝐺 sending elements in �̃� from 𝐺 to themselves, and sending vertices
from 𝑖 + 𝑗 to their image under 𝑖 + 𝑗 → 𝐿 → 𝐺 . Then a pushout complement
𝑖 + 𝑗 → 𝐶 → 𝐺 is valid if and only the context 𝐶 is a quotient on the exploded
context that only identifies vertices in the image of 𝑞−1(𝑣) for each vertex 𝑣 ∈ 𝐺 .

Given a DPO rule and matching, we can enumerate all pushout complements; each
of these corresponds to a valid rewrite in a Frobenius setting.

Notation 9.30. For a rule
〈

𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
∈ SΣ+Frob, its DPO rule is defined

as ⟨⟨
〈

𝑙 , 𝑟

〉
⟩⟩Σ := ⟨⟨⌜ 𝑙 ⌝⟩⟩Σ ← 𝑖 + 𝑗 → ⟨⟨⌜ 𝑟 ⌝⟩⟩Σ.

Theorem 9.31 ([BGK+22a, Thm. 4.9]). For rule 𝑟 ∈ SΣ + Frob, we have that
𝑔 ⇒𝑟 ℎ if and only if ⟨⟨⌜ 𝑔 ⌝⟩⟩Σ ⇝⟨⟨𝑟⟩⟩Σ ⟨⟨⌜

𝑔 ⌝⟩⟩Σ.

9.2.1 Multicoloured rewriting

The results generalise in the obvious way to the coloured setting.

Notation 9.32. For a term rewrite rule
〈

𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
in S𝐶,Σ + Frob𝐶 , its

interpretation as a DPO rule is defined as

⟨⟨
〈

𝑙 , 𝑟

〉
⟩⟩𝐶,Σ := ⟨⟨⌜ 𝑙 ⌝𝐶⟩⟩𝐶,Σ ← 𝑖 𝑗 → ⟨⟨⌜ 𝑟 ⌝𝐶⟩⟩𝐶,Σ.

Definition 9.33 ([BGK+22a]). Let ⌜−⌝𝐶 : S𝐶,Σ + Frob𝐶 → S𝐶,Σ + Frob𝐶 be defined

as having action 𝑓𝑚 𝑛 ↦→ 𝑓

𝑚

𝑛 .

Theorem 9.34 ([BGK+22a, Prop. 4.10]). For rewrite rule 𝑟 ∈ S𝐶,Σ+Frob𝐶 , we have
that 𝑔 ⇒𝑟 ℎ if and only if ⟨⟨⌜ 𝑔 ⌝𝐶⟩⟩𝐶,Σ ⇝⟨⟨𝑟⟩⟩𝐶,Σ ⟨⟨⌜

𝑔 ⌝𝐶⟩⟩𝐶,Σ.
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9.3 Rewriting with traced structure

Say we have a rewrite rule and a term as illustrated below:

𝑙 = 𝑟
𝑓1

𝑙 𝑓2

Clearly the rule should be valid in a traced setting, but when assembling the term into
the form of Definition 9.35 not all of the pieces are traced terms.

𝑓1
𝑙 𝑓2

=
𝑓1

𝑙

𝑓2

Fortunately, by tweaking the layout of the terms this term can be put into a form in
which we can isolate the instance of a rewrite rule and the remaining context such that
all of the pieces are valid traced monoidal terms.

Definition 9.35 (Traced rewriting system). A rewriting system R for a traced
PROP C consists is a set of rewrite rules

〈
𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
. Given terms

𝑔𝑚 𝑛 and ℎ𝑚 𝑛 in TΣ we write 𝑔 ⇒R ℎ if there exists a rewrite
rule

〈
𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
in R and 𝑐

𝑗 𝑖
𝑚 𝑛

in TΣ such that

𝑔 = 𝑙 𝑐
and ℎ = 𝑟

𝑐

by axioms of STMCs. We write 𝑙 ⇒★
R 𝑟 for a sequence of such rules.

In the Frobenius setting, every pushout complement is a valid rewrite, but there is
no reason for the same to be the case for traced or traced comonoid rewriting. Bonchi
et al showed in [BGK+22b] that exactly one pushout complement corresponds to a valid
rewrite in the symmetric monoidal case by characterising it as a boundary complement.

Definition 9.36 (Boundary complement [BGK+22b, Def. 30]). For monogamous
cospans 𝑖 𝑎1−→ 𝐿

𝑎2←− 𝑗 and𝑚 𝑏1−→ 𝐺
𝑏2←− 𝑛 and a monomorphism 𝑓 : 𝐿 → 𝐺 , a pushout

complement as below
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𝐿 𝑖 + 𝑗

𝐺 𝐶

𝑚 + 𝑛

𝑓

𝑎:=[𝑎1,𝑎2]

𝑐:=[𝑐1,𝑐2]
⌝

𝑔

[𝑏1,𝑏2]
𝑑 :=[𝑑1,𝑑2]

is called a boundary complement if the morphisms 𝑐1 and 𝑐2 are mono and
𝑗 +𝑚

[𝑐2,𝑑1]−−−−−→ 𝐶
[𝑑2,𝑐1]←−−−−− 𝑛 + 𝑖 is a monogamous cospan.

Proposition 9.37 ([BGK+22b], Prop. 31). When boundary complements exist in
HypΣ, they are unique.

For rewriting in a traced setting we weaken boundary complements, replacing
references to monogamy with partial monogamy.

Definition 9.38 (Traced boundary complement). For partial monogamous cospans
𝑖
𝑎1−→ 𝐿

𝑎2←− 𝑗 and 𝑚 𝑏1−→ 𝐺
𝑏2←− 𝑛, a pushout complement as below

𝐿 𝑖 + 𝑗

𝐺 𝐶

𝑚 + 𝑛

𝑓

𝑎:=[𝑎1,𝑎2]

𝑐:=[𝑐1,𝑐2]
⌝

𝑔

[𝑏1,𝑏2]
𝑑 :=[𝑑1,𝑑2]

is called a traced boundary complement if the morphisms 𝑐1 and 𝑐2 are mono and
𝑗 +𝑚

[𝑐2,𝑑1]−−−−−→ 𝐶
[𝑑2,𝑐1]←−−−−− 𝑛 + 𝑖 is a partial monogamous cospan.

By restricting to traced boundary complements, DPO rewriting can be formulated
for terms in a traced setting.

Definition 9.39 (Traced DPO). For morphisms 𝐺 ← 𝑚 + 𝑛 and 𝐻 ← 𝑚 + 𝑛 in
HypΣ, there is a traced rewrite 𝐺 ⇝R 𝐻 if there exists a rule 𝐿 ← 𝑖 + 𝑗 → 𝑅 ∈ R
and cospan 𝑖 + 𝑗 → 𝐶 ←𝑚 + 𝑛 ∈ HypΣ such that the diagram in Definition 9.7
commutes and 𝑖 + 𝑗 → 𝐶 is a traced boundary complement.

In a traced boundary complement, the matching 𝐿 → 𝐺 is not required to be mono;
permitting the matching to merge vertices means that incidences of a rewrite rule can
be found inside a trace.
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Example 9.40. Consider the rule
〈

𝑒 , 𝑒1

〉
and the term 𝑒 , in which

there is clearly an instance of the rule. The interpretation of this as a DPO deriva-
tion with a valid traced boundary complement is illustrated below.

0
𝑒

1
1

3

0

2
10

𝑒1

0 1 2 3

𝑒

0 1
0 1

𝑒1

A key feature of rewriting modulo traced structure is the yanking axiom, which can
lead to some non-obvious rewrites.

Example 9.41. Consider the rule
〈

𝑒
,

𝑒1

𝑒2

〉
. The interpretation of this as

a DPO rule in a valid traced boundary complement is illustrated below.

0

2 3
𝑒

1 1

3

0

2

1

3

0

2
𝑒1

𝑒2

0 1 2 3

𝑒

3 0 1 2
3 0

𝑒1
1 2

𝑒2

This corresponds to a valid term rewrite:

𝑒
=

𝑒
=

𝑒2

𝑒1
= 𝑒1 𝑒2

Use of yanking is also what can lead to multiple boundary complements, and hence
a choice in rewrites.
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Example 9.42. Consider the rule
〈

,
𝑒1

𝑒2

〉
. Below are two valid traced

boundary complements involving a matching of this rule.

0 1

2 3

1

3

0

2

1

3

0

2
𝑒1

𝑒2

0 1 2 3 0 1 2 3 1 2 30
𝑒1 𝑒2

0 3

0 1

2 3

1

3

0

2

1

3

0

2
𝑒1

𝑒2

0 1 2 3 2 3 0 1 3 0 12
𝑒2 𝑒1

2 1

These two derivations arise through yanking:

= = =
𝑒1

𝑒2
= 𝑒1 𝑒2

= = =
𝑒1

𝑒2
= 𝑒1𝑒2

Another condition on symmetric monoidal graph rewriting is that the matching
must be convex: any path between vertices must also be captured. Again thanks to
yanking, this is not necessary in the traced case.
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Example 9.43. Consider the rule
〈

𝑒1 𝑒2 ,
𝑒4

𝑒4

〉
and the term

𝑒1
𝑒3 𝑒2 . Although it is not immediately obvious, there is in fact a matching

of the former in the latter. Performing the DPO procedure yields the following:

𝑒1 𝑒2
1 3

20 0
1

2
3

𝑒4

𝑒4
1 3

20

𝑒1
𝑒3 𝑒2

1 32 0
𝑒3

1 32 0
𝑒4 𝑒3 𝑒4

1 32 0

0 3

In a non-traced setting this is an invalid rule, but it is possible with yanking.

𝑒1
𝑒3 𝑒2 =

𝑒1
𝑒3 𝑒2

=
𝑒1

𝑒3

𝑒2
=

𝑒3 𝑒4

𝑒4

= 𝑒4 𝑒3 𝑒4

For traced DPO to be sound, the rewritten graph must correspond to a traced term.
First we prove a lemma to show how using the compact closed structure of SΣ + Frob
to reorganise interfaces corresponds to switching the cospan maps in Csp𝐷 (HypΣ).

Lemma 9.44. Let 𝑐
𝑚 𝑝
𝑛 𝑞 be a term in SΣ + Frob. Then if ⟨⟨ 𝑐 ⟩⟩𝐶,Σ =

𝑚 + 𝑛
[𝑓1,𝑓2]−−−−→ 𝐹

[𝑔1,𝑔2]←−−−−− 𝑝 + 𝑞 then ⟨⟨ 𝑐 ⟩⟩𝐶,Σ = 𝑝 +𝑚
[𝑔1,𝑓1]−−−−→ 𝐹

[𝑓2,𝑔2]←−−−− 𝑛 + 𝑞.

Proof. By definition of cups and caps in Csp𝐷 (HypΣ).

We need to show that rewriting a term with a rule
〈

𝑙 , 𝑟

〉
coincides with

graph rewriting on the hypergraph interpretations of this rule.
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Notation 9.45. For a traced rule
〈

𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
∈ TΣ, its DPO rule is defined

as ⟨⟨
⌊〈

𝑙 , 𝑟

〉⌋T
Σ
⟩⟩Σ := ⟨⟨⌜

⌊
𝑙

⌋T
Σ
⌝⟩⟩Σ ← 𝑖 + 𝑗 → ⟨⟨⌜

⌊
𝑟

⌋T
Σ
⌝⟩⟩Σ.

Theorem 9.46. For a rule 𝑟 ∈ TΣ, we have that 𝑔 ⇒𝑟 ℎ if and only if

⟨⟨⌜
⌊

𝑔
⌋T
Σ
⌝⟩⟩Σ ⇝⟨⟨⌊𝑟⌋TΣ⟩⟩Σ ⟨⟨⌜

⌊
ℎ

⌋T
Σ
⌝⟩⟩Σ.

Proof. First the (⇒) direction. If 𝑔 ⇒R ℎ then we have 𝑔 =

𝑙 𝑐
and 𝑟

𝑐
= ℎ ; we must derive the DPO diagram in

HypΣ. First we give names to the following cospans:

0→ 𝐿 ← 𝑖 + 𝑗 := ⟨⟨⌜
⌊

𝑙

⌋T
Σ
⌝⟩⟩Σ = ⟨⟨

𝑙
⟩⟩Σ

0→ 𝑅 ← 𝑖 + 𝑗 := ⟨⟨⌜
⌊

𝑟

⌋T
Σ
⌝⟩⟩Σ = ⟨⟨

𝑟
⟩⟩Σ

0→ 𝐺 ←𝑚 + 𝑛 := ⟨⟨⌜
⌊

𝑔
⌋T
Σ
⌝⟩⟩Σ = ⟨⟨

𝑐𝑙
⟩⟩Σ

0→ 𝐻 ←𝑚 + 𝑛 := ⟨⟨⌜
⌊

ℎ

⌋T
Σ
⌝⟩⟩Σ = ⟨⟨

𝑐
𝑟

⟩⟩Σ

Moving into SΣ + Frob, we have that
𝑐𝑙

= 𝑐𝑙 ;

so by functoriality ⟨⟨⌜
⌊

𝑔
⌋T
Σ
⌝⟩⟩Σ = ⟨⟨

𝑙
⟩⟩Σ # ⟨⟨ 𝑐 ⟩⟩Σ, i.e.

0→ 𝐺 ←𝑚 + 𝑛 = 0→ 𝐿 ← 𝑖 + 𝑗 # 𝑖 + 𝑗 → 𝐶 ←𝑚 + 𝑛. Cospan composition is
by pushout, so 𝐿 → 𝐺 ← 𝐶 is a pushout. Using the same reasoning, 𝑅 → 𝐺 ← 𝐶

is also a pushout; this gives us the DPO diagram. All that remains is to check
that the aforementioned pushouts are traced boundary complements; this follows
by Lemma 9.44 as ⟨⟨

⌊
𝑐

⌋
Σ
⟩⟩Σ is partial monogamous.

Now for the (⇐) direction: we assume we have a traced DPO rewrite, so there
exist cospans 0→ 𝐿 ← 𝑖 + 𝑗, 0→ 𝑅 ← 𝑖 + 𝑗, 𝑖 + 𝑗 → 𝐶 ←𝑚 + 𝑛 as above such that
the DPO diagram commutes and 𝑖 + 𝑗 → 𝐶 → 𝐺 is a traced boundary complement.

We must show that 𝑔 = 𝑙 𝑐
and ℎ = 𝑟

𝑐
.

We have that 0→ 𝐺 ←𝑚 + 𝑛 = 0→ 𝐿 ← 𝑖 + 𝑗 # 𝑖 + 𝑗
[𝑐1,𝑐2]−−−−→ 𝐶

[𝑑1,𝑑2]←−−−−−𝑚 + 𝑛
as cospan composition is by pushout. Let 𝑐′

𝑖 𝑚
𝑗 𝑛

be the term in SΣ + Frob such
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that ⟨⟨ 𝑐′ ⟩⟩Σ = 𝑖 + 𝑗
[𝑐1,𝑐2]−−−−→ 𝐶

[𝑑1,𝑑2]←−−−−−𝑚 + 𝑛, which exists as ⟨⟨−⟩⟩Σ is full.

The cospan 𝑗 +𝑚
[𝑐2,𝑑1]−−−−−→ 𝐶

[𝑐1,𝑑2]←−−−−− 𝑖 + 𝑛 is partial monogamous because 𝑖 + 𝑗 →
𝐶 → 𝐺 is a traced boundary complement. Let 𝑐

𝑗 𝑖
𝑚 𝑛

be the term in SΣ + Frob

such that ⟨⟨ 𝑐 ⟩⟩Σ = 𝑗 +𝑚
[𝑐2,𝑑1]−−−−−→ 𝐶

[𝑐1,𝑑2]←−−−−− 𝑖 + 𝑛. Using Lemma 9.44, we have

that ⟨⟨ 𝑐 ⟩⟩Σ = 𝑖 + 𝑗
[𝑐1,𝑐2]−−−−→ 𝐶

[𝑑1,𝑑2]←−−−−−𝑚 + 𝑛.

So we have that ⟨⟨⌜ 𝑔 ⌝⟩⟩Σ = ⟨⟨⌜ 𝑙 ⌝⟩⟩Σ # ⟨⟨ 𝑐′ ⟩⟩Σ; by fullness we

derive that 𝑔 =
𝑙

𝑐′ = 𝑐𝑙 =
𝑐𝑙

. This

means that ⌜ 𝑔 ⌝ =
𝑐𝑙

so ‘unfolding’ the interface gives us

𝑔 = 𝑙 𝑐
. Since ⟨⟨ 𝑐 ⟩⟩Σ is partial monogamous, 𝑐 is in TΣ.

As the trace in TΣ is the canonical trace, the entire term is in TΣ, completing the
proof. The same procedure holds for rewriting from the other direction.

This gives us a sound and complete graph rewriting system for terms in TΣ, and
can be generalised to the coloured setting as well.

Notation 9.47. For a rewrite rule
〈

𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
∈ T𝐶,Σ, its DPO rule is

⟨⟨
⌊〈

𝑙 , 𝑟

〉⌋T
𝐶,Σ
⟩⟩𝐶,Σ, defined as

⟨⟨⌜
⌊

𝑙

⌋T
𝐶,Σ
⌝𝐶⟩⟩𝐶,Σ ← 𝑖 𝑗 → ⟨⟨⌜

⌊
𝑟

⌋T
𝐶,Σ
⌝𝐶⟩⟩𝐶,Σ.

Theorem 9.48. For a rule 𝑟 ∈ TΣ, we have that 𝑔 ⇒𝑟 ℎ if and only if

⟨⟨⌜
⌊

𝑔
⌋T
𝐶,Σ
⌝𝐶⟩⟩𝐶,Σ ⇝⟨⟨⌊𝑟⌋T𝐶,Σ⟩⟩𝐶,Σ ⟨⟨⌜

⌊
𝑔

⌋T
𝐶,Σ
⌝𝐶⟩⟩𝐶,Σ.

9.4 Rewriting with commutative comonoid structure

Hypergraphs are a good fit for rewriting terms in SΣ + Frob because they allow rewrit-
ing modulo Frobenius structure. We can take advantage of this to rewrite modulo
cocommutative comonoid structure on top of the trace.
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Definition 9.49 (Traced left-boundary complement). For partial left-monogamous
cospans 𝑖 𝑎1−→ 𝐿

𝑎2←− 𝑗 and 𝑛
𝑏1−→ 𝐺

𝑏2←−𝑚 ∈ HypΣ, a pushout complement as in
Definition 9.38 is called a traced left-boundary complement if 𝑐2 is mono and
𝑗 +𝑚

[𝑐2,𝑑1]−−−−−→ 𝐶
[𝑐1,𝑑2]←−−−−− 𝑖 + 𝑛 is a partial left-monogamous cospan.

Definition 9.50 (Traced comonoid DPO). For morphisms 𝐺 ← 𝑚 + 𝑛 and 𝐻 ←
𝑚 + 𝑛 in HypΣ, there is a traced comonoid rewrite 𝐺 ⇝R 𝐻 if there exists a rule
𝐿 ← 𝑖 + 𝑗 → 𝐺 ∈ R and cospan 𝑖 + 𝑗 → 𝐶 ←𝑚 + 𝑛 ∈ HypΣ such that diagram in
Definition 9.7 commutes and 𝑖 + 𝑗 → 𝐶 → 𝐺 is a traced left-boundary complement.

Just like traced rewriting, there may be multiple traced left-boundary complements,
which arise because we are now absorbing the equations of a cocommutative comonoid.

Example 9.51. Consider the following rule and its interpretation.

〈
, 𝑒

〉
0 1 2 0

1

2
0

1

2𝑒

Two valid rewrites of this rule in 3 → 0 1 2 3 are:

0 1 2 3 →
0 1

2 3𝑒

0 2 1 3 →
0 1

2 3𝑒

The first rewrite is the ‘obvious’ one, but the second also holds by cocommutativity:

= 𝑒 = = 𝑒

To show the soundness and completeness of traced comonoid rewriting, we follow
the same procedure as in the traced setting.

Notation 9.52. For a rule
〈

𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
∈ TΣ + CComon, its traced

comonoid DPO rule is ⟨⟨
⌊〈

𝑙 , 𝑟

〉⌋
Σ
⟩⟩Σ, defined as

⟨⟨⌜
⌊

𝑙

⌋
Σ
⌝⟩⟩Σ ← 𝑖 + 𝑗 → ⟨⟨⌜

⌊
𝑟

⌋
Σ
⌝⟩⟩Σ.
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Theorem 9.53. For a rewrite rule 𝑟 ∈ TΣ + CComon, we have that 𝑔 ⇒𝑟

ℎ if and only if ⟨⟨⌜
⌊

𝑔
⌋
Σ
⌝⟩⟩Σ ⇝⟨⟨⌊𝑟⌋Σ⟩⟩Σ ⟨⟨⌜

⌊
𝑔

⌋
Σ
⌝⟩⟩Σ.

Proof. As Theorem 9.46, but with partial left-monogamy and traced left-boundary
complements.

This means that we can also safely perform rewriting modulo traced comonoid
structure by building on the machinery used for the traced case. Predictably, the same
also holds for the coloured setting.

Notation 9.54. For a rule
〈

𝑙𝑖 𝑗 , 𝑟𝑖 𝑗

〉
∈ T𝐶,Σ + CComon𝐶 , its DPO rule

is ⟨⟨
⌊〈

𝑙 , 𝑟

〉⌋
𝐶,Σ
⟩⟩𝐶,Σ, defined as

⟨⟨⌜
⌊

𝑙

⌋
𝐶,Σ
⌝𝐶⟩⟩𝐶,Σ ← 𝑖 𝑗 → ⟨⟨⌜

⌊
𝑟

⌋
𝐶,Σ
⌝𝐶⟩⟩𝐶,Σ.

Theorem 9.55. For a rewrite rule 𝑟 ∈ T𝐶,Σ+CComon𝐶 , we have 𝑔 ⇒𝑟 ℎ

if and only if ⟨⟨⌜
⌊

𝑔
⌋
𝐶,Σ
⌝𝐶⟩⟩𝐶,Σ ⇝⟨⟨⌊𝑟⌋𝐶,Σ⟩⟩𝐶,Σ ⟨⟨⌜

𝑔 ⌝𝐶⟩⟩𝐶,Σ.



Chapter 10

Applications of graph rewriting

We can now rewrite traced string diagrams modulo traced comonoid structure, which
can be applied to several areas across computed science. In this chapter, we will
examine how the rewriting framework can be applied to settings with a traced Cartesian
(dataflow) structure, and to our intended application of sequential circuits.

10.1 Cartesian structure

One important class of categories with a traced comonoid structure are traced Cartesian,
or dataflow, categories [CŞ90]. Recall fromDefinition 2.102 that the tensor in a Cartesian
category is given by the category-theoretic product. We can equivalently view this as a
category in which each object is equipped with a commutative comonoid structure in
which the comonoid and counit are natural: morphisms can be ‘pushed’ through them.

Theorem 10.1 ([Fox76]). A category C equipped with a commutative comonoid
structure is Cartesian if and only if the equations in Figure 10.1 hold for all

𝑓𝑚 𝑛 .

Sequential circuits have a natural notion of copying and discarding data, so it
makes sense that the semantic categories of circuits should be Cartesian. In [GJ16], the
equational theory is used to show that this is the case, but with the stream semantics
we have a much more elementary proof.

Theorem 10.2. StreamI is Cartesian.
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= (CUL) = (CUR)

= (CA) = (CC)

𝐴 ⊗ 𝐵 𝐴 ⊗ 𝐵
𝐴 ⊗ 𝐵 =

𝐵
𝐴

𝐴

𝐵

𝐴
𝐵 (CCC) 𝐴 ⊗ 𝐵 = 𝐴

𝐵
(CCU)

𝐵
𝐵

𝑓𝐴 = 𝐴
𝑓

𝑓

𝐵

𝐵
(NC) 𝐴 𝑓 = (ND)

Figure 10.1: Equations that hold in any Cartesian category

𝑛
𝑛

𝑓𝑚 = 𝑚
𝑓

𝑓

𝑛

𝑛
(NC) 𝑚 𝑓 = (ND)

Figure 10.2: Equations of the monoidal theory Cart, for generator 𝑓

Proof. The tensor in StreamI is defined to be the Cartesian product.

As the three semantic categories are isomorphic to StreamI they are also Cartesian.

Corollary 10.3. SCircΣ/≈I , SCircΣ/∼I and SCircΣ/EI are Cartesian.

We can express the data of a Cartesian category as an extension of the monoidal
theory of commutative comonoids.

Definition 10.4. The Cartesian monoidal theory (ΣCart, ECart) is defined as ΣCart :=
ΣCComon and ECart := ΣCComon + (NC) + (ND) where (NC) and (ND) are defined
as in Figure 10.2.

Remark 10.5. Note that we do not need the two ‘coherence’ Cartesian equations
when considering monoidal theories, because they follow immediately from the
construction of multiple-bit structures (Notation 3.8).

The hypergraph interpretations of these rules are shown in Figure 10.3.

Remark 10.6. The combination of Cartesian equations with the underlying com-
pact closed structure of Csp𝐷 (HypΣ) may prompt alarm bells, as a compact
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𝑒
0 1 2 0 1

2

𝑒0
1

𝑒
2

𝑒
0 0 0

Figure 10.3: Interpretations of equations in Cart for generator 𝑒 .

closed category in which the tensor is the Cartesian product is trivial. However,
Csp𝐷 (HypΣ) is not subject to these equations: it is only a setting for performing
graph rewrites.

Using hypergraphs to reason about Cartesian categories is appealing because one
can focus on applying the two naturality equations (NC) and (ND). As a case study,
we will consider fixed point operators; several equivalent axiomatisations exist [Has97;
SP00], but we use the equations presented in [Has09].

Definition 10.7 ([Has09]). Let C be a Cartesian category. A Conway fixed point
operator in C is a family of functions (−)†𝐴,𝑋 : C (𝐴 × 𝑋,𝑋 ) → C (𝐴,𝑋 ) drawn as(

𝑓𝑋
𝑋

𝐴

)
:=

𝑓

subject to the following equations:

𝑓
=

𝑓
𝑓

𝑓 = 𝑓

𝑔
𝑓 =

𝑔
𝑓

𝑔

𝑓𝑔 = 𝑓𝑔

The notation we use for fixed point operators is already evocative of a trace, and
the two are indeed equivalent. This was independently observed by Bloom and Ésik
[BÉ93], Ştefănescu [Ste00], and Hyland, the former two before the notion of traced
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monoidal categories were formalised.

Theorem 10.8 ([Has97, Thm. 3.1], [Has99]). A Cartesian category is traced if
and only if it has a Conway operator.

Proof. This can be shown by constructing one operator using the other.

(
𝑓

)†𝑋,𝐴

=
𝑓

Tr𝑋
𝐴,𝑋
(−)

Tr𝑋𝐴,𝐵
(

𝑓

)
=

𝑓

(−)†𝑋⊗𝐵,𝐴

As these constructions are inverses, the conditions are equivalent.

Thismeans that we can reason about fixpoints using the same principles as reasoning
with the trace and the comonoid structure, with the addition of the Cartesian equations.

Example 10.9 (Unfolding). Reasoning about fixpoints in a traced category can be
performed using the unfolding rule.

𝑓
𝑚 𝑛

𝑥
= 𝑓
𝑚

𝑥

𝑛

=
𝑓

𝑓
𝑚

𝑛

𝑥

= 𝑓

𝑥

𝑓𝑚
𝑛

In the syntactic setting, this requires the application of multiple equations: the two
counitality equations followed by the copy equation and optionally some axioms of
STMCs for housekeeping. If we use the hypergraph interpretation, the comonoid
equations are absorbed into the notation so only one rule needs to be applied.

𝑓

2 3

4 5

0

1

40
1

2

5
3

𝑓 2
40

1
𝑓 3

5

𝑓

4 5

0 2 3

1

0 2

1
3
5

4 𝑓 40 2
1

𝑓 3
5

1 5
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The dual notion of traced cocartesian categories [Bai76] are also important in com-
puter science: a trace in a traced cocartesian category corresponds to iteration in the
context of control flow. The details of this section could also be applied to the cocartesian
case by flipping all the directions and working with partial right-monogamous cospans.

10.2 Sequential circuits

When performing traced graph rewriting using hypergraphs, any wires going from
right-to-left are treated in exactly the same way as wires going from left-to-right:
as tentacles connecting source and target vertices. In the operational semantics for
sequential circuits, there are rules that operate especially on graphs of a certain form
enclosed by a trace; while it would be sound to apply these arbitrarily (by virtue of the
sliding axioms), for a productive procedure we need to be more guided. We will select
particular tentacles as the ‘chosen trace wires’ (coloured red) for global transformations.

Example 10.10. Recall the SR NOR latch circuit from Example 3.18. This is
interpreted as follows, where the ∧, ¬ and 𝛿 edges respectively represent the OR
gate, NOT gate, and delay.

0

1 ∨ ¬ 𝛿
2

∨1
0 ¬

3

2

3

Since the transformation into global trace-delay form is through axioms of STMCs,
as hypergraphs a circuit and its trace-delay form are isomorphic. The first rewrite that
needs to be applied is the global Mealy reduction (Mealy).

Example 10.11. Applying the Mealy rewrite to Example 10.10 produces the fol-
lowing cospan of hypergraphs:

0

1 ∨ ¬𝛿

2

∨1
0

¬
3

⊥
∇

2

3

The instant feedback reduction can produce a complicated term with many forks;
in the hypergraph representation, these forks are all absorbed into one.
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Example 10.12. Below is an example showing how the instant feedback rewrite is
applied to a circuit in Mealy form containing one generator 𝑒.

1

0 2

3𝑒

0

1

2

3
1

0
𝑒

𝑒
2

3

𝑒

1

0
𝛿

2

3𝑒
1

0
𝛿

2

3 𝛿

1

0
𝑒

𝑒

2

3𝑒

1 3

As the instant feedback rule eliminates non-delay-guarded feedback loops, there
are no red tentacles in the right-hand side of the rule or the rewritten graph.

Example 10.13. The interpretation of the SR latch from Example 10.11 after
being rewritten by the instant feedback rewrite is shown below.
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After performing the instant feedback rewrite, the graph is ready to receive inputs.

Example 10.14. We apply the inputs tf to the prepared SR latch hypergraph from
Example 10.13 by precomposing some value registers.
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This graph is then rewritten by the streaming rule.
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Figure 10.4: Hypergraph interpretations of the value rules
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The final step is to propagate the values using the value rules. These have straight-
forward hypergraph interpretations, which are illustrated in Figure 10.4.

Example 10.15. When applying the value rules to the streamed circuit from Ex-
ample 10.14, we apply the fork rules as much as possible to propagate the values:
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We can then repeatedly apply the gate and eliminate rule to obtain the outputs
and next state, which can be seen below.
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To identify the outputs, one simply needs to traverse from the outputs of the graph.

The initial global transformations do not have to be performed for each time-step;
for subsequent inputs one only needs to use the streaming and value rules.

Remark 10.16. Note that the fork rule is not left-linear as it uses the comonoid
structure. Consider the term 𝑣 ; in the hypergraph interpretation it is pos-
sible to apply the fork rule to this term.

𝑣
0 1

0

1
𝑣

0

𝑣
1

𝑣
0 1

¬
2

1
¬

0

2 1
¬

0

𝑣

𝑣
2

2

𝑓

This reduction has arisen due to the counitality of the comonoid.

𝑣 = 𝑣 ⇝
𝑣

𝑣

This means that a fork rewrite is only productive if the vertex in the image of 𝑓
has out-degree greater than 1.
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10.3 Hardware description language

We motivated graph rewriting for digital circuits as an avenue for automating their
reasoning. To this end, the operational semantics for sequential circuits has been imple-
mented into a hardware description language (HDL) in Cangjie, a programming language
by Huawei. The source code is at https://github.com/georgejkaye/circuit-cj.

10.3.1 Types of HDLs

Designing intricate circuits using pen and paper would be incredibly tedious and
complicated. For this reason, hardware description languages, programming languages
specialised for designing hardware, are often employed to design circuits on a computer.

A hardware descriptionmay be a completely bespoke language, such as VHDL [IEE88]
and Verilog [IEE96]. As well as being able to construct circuits structurally by piecing
components together, behavioural descriptions can be specified in a dataflow manner,
in which constants are immediately propagated across the program upon updating,
much like in a spreadsheet. This differs from the control flow style of execution in
ordinary programming languages, in which each line of code runs sequentially.

Because they are so different to traditional programming languages, this can make
VHDL and Verilog inpenetrable to outsiders. An alternative is to embed a HDL into an
already existing language. Choices of parent language include Haskell (Lava [BCSS98],
Bluespec [Nik04], Clash [Koo09; BKK+10]), OCaml (Hardcaml [RDQY23]), and Scala
(Chisel [BVR+12]). Because these are primarily functional, these HDLs are more struc-
tural in nature; circuits are created by composing functions together; we opted to follow
this approach when implementing our language.

10.3.2 Design

Rather than designing circuits using the categorical style of juxtaposing tiles in sequence
and parallel, the tool uses a more conventional approach where the user manipulates
wires and provides them as arguments to other components.

Example 10.17. We will first demonstrate how to define the combinational half
adder circuit from Example 3.11. We begin by defining an XOR gate.

let xorA = sig.UseWire(1)

let xorB = sig.UseWire(1)

let xorOr = UseOr(xorA, xorB)

let xorNand = UseNot(UseAnd(xorA, xorB))

let xorAnd = UseAnd(xorOr, xorNand)

https://github.com/georgejkaye/circuit-cj
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let xor = MakeSubcircuit(

[InterfaceWire(xorA, "A"), InterfaceWire(xorB, "B")],

[InterfaceWire(xorAnd, "Z")],

"XOR"

)

Once a subcircuit has been defined, a specification in Dot can be generated and
rendered using Graphviz.

Using the XOR as a subcomponent, we can define the half adder.

let addA = sig.UseWire(1)

let addB = sig.UseWire(1)

let sum = UseSubcircuit(xor, [addA, addB])[0]

let carry = UseAnd(addA, addB)

let halfAdder = MakeSubcircuit(

[InterfaceWire(addA, "A"), InterfaceWire(addB, "B")],

[InterfaceWire(sum, "S"), InterfaceWire(carry, "C")],

"half adder"

)

The generated graphs have a hierarchical structure: because we defined the
XOR gate as a subcircuit, we can view it as a black box or expand it.

As usual, it is the sequential circuits which are the most interesting. The tool can be
used to insert delays and feedback loops to circuits.
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Example 10.18. The SR NOR latch from Example 3.18 can be created

let r = sig.UseWire(1)

let s = sig.UseWire(1)

let fb = sig.UseWire(1)

let or1 = UseOr(r, fb)

let not1 = UseNot(or1, delay: 1)

let or2 = UseOr(not1, s)

let not2 = UseNot(or2)

Feedback(not2, fb)

let latch = MakeSubcircuit(

[InterfaceWire(r, "R"), InterfaceWire(s, "S")],

[InterfaceWire(not1, "Q"), InterfaceWire(not2, "Q’")],

"SR NOR Latch"

)

10.3.3 Evaluation

The tool can automatically reduce them using the operational semantics, by first assem-
bling circuits into Mealy form and eliminating non-delay-guarded feedback.

Example 10.19. Before evaluation can be performed, the SR NOR latch defined
in Example 3.18 is automatically translated into Mealy form.

Note that this is a simpler circuit than the corresponding string diagram version in
Example 5.20 because the tool automatically applies combinational reductions (in
particular, the elimination rule) to tidy up the resulting circuit.

Once the circuit is translated into the correct form, inputs can be provided and the
circuit evaluated step-by-step.
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Example 10.20. We now provide inputs to the evaluator created in Example 10.19;
recall that the first input is the Reset input and the second is the Set input.

let eval = Evaluator(latch)

eval.PerformCycle([FALSE, TRUE])

eval.PerformCycle([FALSE, FALSE])

eval.PerformCycle([TRUE, FALSE])

eval.PerformCycle([FALSE, FALSE])

This automatically applies the reduction rules to determine the output values over
time. The inputs detailed above produce the output stream ⊥f ::tf ::tf ::ft, illustrated
below in the small boxes. This is the expected output as the delay causes the first
tick of outputs to be underdefined.

10.3.4 Cyclic combinational circuits

The use of the instant feedback rule means that the tool can also handle circuits with
non-delay-guarded feedback that exhibit combinational behaviour.

Example 10.21. Recall the circuit from Example 5.15 containing blackboxes 𝑓
and 𝑔, in which the control signal dictates the order the circuits are applied.

// Input wires

let x = sig.UseWire(1)

let c = sig.UseWire(1)

// Wire from feedback

let feedback = sig.UseWire(1)

// Top half of the circuit

let muxa = UseMux2(s0: c, i0: x, i1: feedback)

let fbb = belnapSignature.AddBlackbox("f", [Port(1, "A")],

[Port(1, "Z")])

let f = UseBlackbox(fbb, [muxa])[0]

// Bottom half of the circuit

let muxb = UseMux2(s0: c, i0: f, i1: x)

let gbb = belnapSignature.AddBlackbox("g", [Port(1, "A")],
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[Port(1, "Z")])

let g = UseBlackbox(gbb, [muxb])[0]

Feedback(g, feedback)

// Final multiplexer

let muxc = UseMux2(s0: c, i0: g, i1: f)

let cyclic = MakeSubcircuit(

[InterfaceWire(X, "x"), InterfaceWire(C, "c")],

[InterfaceWire(muxc, "Z")],

"cyclic_combinational"

)

This generates the following circuit:

By providing input values we can verify that this circuit truly does have combina-
tional behaviour.

let eval = Evaluator(sig, cyclic)

eval.PerformCycle([TRUE, TRUE])

eval.PerformCycle([TRUE, FALSE])

Due to the blackboxes, this circuit cannot be be reduced to a stream of output
values, but it can be reduced to an expression in terms of 𝑓 and 𝑔.

10.3.5 Partial evaluation

One of the benefits of the graph-rewrite-based evaluation style is that it allows for
partial evaluation. The tool implements some of the strategies discussed in Section 7.2,
such as tidying rules, shortcut rules, and uncertain values for reasoning with protocols.

Example 10.22. Recall the circuit from Example 7.9, which reduces to the identity
when the first input is fixed as either true or false. This can be designed as follows:
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let v = sig.UseWire(1)

let w = sig.UseWire(1)

let not = UseNot(v)

let or1 = UseOr(not, v)

let fb = sig.UseWire(1)

let or2 = UseOr(fb, or1)

let and = UseAnd(or2, w)

DelayGuardedFeedback(and, fb)

let circ = MakeSubcircuit(

[InterfaceWire(v, "A"), InterfaceWire(w, "B")],

[InterfaceWire(and, "Z")],

"circuit"

)

This produces the following circuit:

We apply some uncertain values and partially evaluate.

let eval = PartiallyEvaluate(

sig, [GetVariable([TRUE, FALSE]), GetUnspecified(sig)], circ

)

For each input provided, the tool prepends infinite waveforms containing the (po-
tentially uncertain) waveforms.

We can then visualise the reduction procedure step by step. First the waveform is
propagated over the NOT gate:
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As the inputs to the OR gate can only ever produce true, this can be rewritten:

An OR gate with one input as true will always produce true, so this can be replaced
and its other input eliminated:

The delay can also be eliminated:

Finally, since an AND with a true input acts as the identity on the other input, this
can also be replaced:

This shows how the entire circuit can be automatically reduced to the identity.

While this is just a toy example, the procedure can easily be applied to more complex
circuits and potentially find optimisations.
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Conclusion

This brings us to the conclusion of this work; in this final chapter we will sum up our
contributions and look ahead to the future.

11.1 Summary of contributions

Our contributions can be divided into two main topics: the development of a fully
compositional theory of sequential circuits, and the application of this framework to
graph rewriting.

11.1.1 Semantics of Digital Circuits

The first major contribution of this thesis was to take the existing informal work on
categorical semantics of sequential circuits [GJ16; GJL17a] and develop it into a rigorous
mathematical theory.

Syntax of sequential circuits

In the original work on categorical semantics for digital circuits [GJ16], the semantics
of circuits were defined as part of the base categories of circuits. Not only was this a
confusing presentation, it also ‘hardcoded’ a particular approach to semantics, which
made later developments more fiddly. In Chapter 3, we built the foundations for a
different approach, in which circuits are first constructed as morphisms in a PROP
SCircΣ of syntactic circuits with no associated behaviour. Behaviour of circuits can
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be assigned by quotienting this category by some semantic relation; this makes the
framework as a whole more modular and ‘semantic-agnostic’.

Denotational semantics

The semantics of circuit components was previously defined as part of equations on
the syntactic category; in Chapter 4 we defined the notion of an interpretation I of
components as morphisms in a PROP of monotone functions FuncI in order to keep
syntax and semantics separate. This interpretation parameterises the PROP StreamI

in which morphisms are causal, monotone, finitely specified stream functions; these
are the denotations of sequential circuits. The major contribution of this section is that
this PROP has a trace: the least fixed point.

In order to map from circuits in SCircΣ to stream functions in StreamI , we used
Mealy machines in Section 4.2. We defined a traced PROP MealyI of monotone Mealy
machines, and showed how we could use existing work on their coalgebraic properties
to map between Mealy machines and stream functions using two PROP morphisms.

The most novel contributions of this chapter arise by relating Mealy machines
and stream functions back to circuits in SCircΣ. In Section 4.3, we defined PROP
morphisms between circuits and Mealy machines, in one direction by freely mapping
circuit components to primitive Mealy machines, and in the other by encoding states of
a Mealy machine while preserving monotonicity. Using these PROP morphisms, we
showed in Section 4.4 that StreamI is a sound and complete denotational semantics for
sequential circuits.

Operational semantics

Previouswork had defined an restricted operational semantics for closed circuits without
non-delay-guarded feedback [GJL17a]. The major contribution of Chapter 5 was the
introduction of the ‘instant feedback’ rule in Section 5.1: eliminating non-delay-guarded
feedback by iterating a circuit a certain number of times. This rule played a key part
in the productive reduction strategy presented in Section 5.2, which is integral to the
formalism of a notion of observational equivalence using a relation ∼I . We showed this
relation is sound and complete with respect to the denotational semantics, and that it is
the largest adequate congruence [Mor69; Gor80] on SCircΣ.

Algebraic semantics

In Chapter 6 we presented a sound and complete algebraic semantics for sequential
circuits, which can be divided into three broad classes. The first class (Section 6.1) con-
tains equations for normalising circuits into a Mealy form with a canonical (essentially
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combinational) core. The second class (Section 6.2) contains equations for encoding
initial states of circuits in Mealy form using Mealy homomorphisms. The final class
(Section 6.3) contains equations for translating between circuits which act the same
way when restricted to the accessible internal states. In Section 6.4 we showed how
these equations are enough to translate between any two denotationally equivalent
circuits, thus exhibiting that this is a sound and complete algebraic semantics.

11.1.2 Graph rewriting for digital circuits

Viewing sequential circuits through the categorical lens opens up newways of reasoning
with circuits, such as by applying recent work on string diagram rewriting [BGK+22a;
BGK+22b] using terms interpreted as morphisms in a category Csp𝐷 (HypΣ) of cospans
of hypergraphs. Our second major contribution is to extend this for settings with a
traced comonoid structure, of which SCircΣ is an example.

String diagrams as hypergraphs

In Chapter 8 we defined two sub-PROPs of Csp𝐷 (HypΣ): the PROP PMCsp𝐷 (HypΣ) of
partial monogamous cospans and the PROPPLMCsp𝐷 (HypΣ) of partial left-monogamous
cospans. We showed the former are in correspondence with traced terms and the latter
are in correspondence with such terms equipped with a cocommutative comonoid struc-
ture: terms equal by equations of STMCs or cocommutative comonoids are mapped to
isomorphic cospans of hypergraphs.

Graph rewriting

The primary reason for interpreting terms as hypergraphs is to perform automatic
reasoning with them via graph rewriting. In Chapter 9 we characterised valid graph
rewrites in a traced or traced comonoid setting using traced boundary complements and
traced left-boundary complements respectively. While there may be multiple valid graph
rewrites, we showed that every graph rewrite performed in this way corresponds to a
valid term rewrite, so the rewriting system is sound and complete.

11.1.3 Case studies in Belnap logic

The framework presented in this thesis is parameterised over a signature specifying
signals and components, and an interpretationmapping them to behaviour. Throughout
the thesis we have considered a particular instantiation in terms of Belnap’s four-valued
logic. In Section 4.5 we showed how the Belnap interpretation is functionally complete
in that all monotone functions between Belnap values can be expressed in terms of
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the three Belnap operations, and in Section 6.5 we defined the equations required to
bring any essentially combinational Belnap circuit into a normal form. We envision
that similar strategies could be applied for reasoning about transistor-level circuits to
more abstract viewpoints.

11.1.4 Implementations

The developments of this thesis have been supported with some small toy examples,
including a running example depicting an SR NOR latch. Unfortunately, any circuit
larger than this quickly explodes in size and scope, and as such is not suitable for
rendering in a book.

For experimenting with the Belnap interpretation, we developed a small tool
(https://belnap.georgejkaye.com) which can generate the corresponding circuits
given Belnap functions and truth tables. On a larger scale, we also developed a hardware
description language for designing and evaluating with circuits using the operational
semantics, presented in Section 10.3.

11.2 Future work

The work presented in this thesis acts as a major milestone in the project to develop a
fully compositional theory of sequential circuits, but there are several ways in which
the work can be continued to create an even more thorough package of categorical
methods for reasoning with digital circuits.

11.2.1 Theoretical extensions

The categorical framework for digital circuits may be sound and complete, but it
only models circuits that are fully specified with concrete values; in Chapter 7 we
presented some ideas for how we could extend the framework. We proposed some
alternate reduction rules to automate the tidying-up of circuits (Section 7.1) or to handle
persistent inputs modelled as infinite waveforms (Section 7.2.1). We also examined how
we could model inputs that follow protocols by adding new components modelling
uncertain values (Section 7.2.3). At a meta-level, we also discussed how we could
apply work on layered PROPs [LZ22] to view circuits at different levels of abstraction
(Section 7.3), or implement new inequality relations to compare circuits that output the
same signals but over different timespans (Section 7.4).

We are particularly keen to investigate the ways that our framework can be applied
to the partial evaluation of sequential circuits; while this is a topic that has been

https://belnap.georgejkaye.com
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examined to some extent [SM99; MS98; TM06], we believe our rigorous foundations
will provide a new perspective on the way forward.

11.2.2 More applications

In Chapter 7 we presented some ideas for how the categorical framework could be
applied to real-world digital circuits. It would be interesting to actually develop these
ideas into proper industry-grade techniques for working with circuits. We could then
compare benchmarks with existing procedures, allowing us to see whether our work
has practical benefit in addition to bringing theoretical clarity.

On the topic of implementation, our hardware description language is still quite
open-ended. While circuits can currently be designed and (partially) evaluated, it would
be useful to add a native way of verifying circuits rather than merely inspecting the
outputs of two circuits manually, perhaps with some built-in verification language.
Moreover, synthesis of circuits to more traditional circuit design languages such as
VHDL or Verilog, or even to a language suitable for printing on silicon (so-called
‘netlists’), would allow for the benefits of our tool to be combined with the experienced
power of the traditional methods.

11.2.3 Beyond the abstraction

Our categorical framework focuses on a commonly-used abstraction of sequential
synchronous circuits. Crucially we operate in a discrete setting, both in terms of the
signals used and the notion of time. A potential future research direction could be to
see if it is possible to adapt the techniques used here to a more continuous setting.

A concept important in circuit design that is not present in our abstraction is that of
fan-out, the idea that there are only so many times one can fork a wire before the signal
it carries becomes unstable. To model this, one would need to work with continuous
signals that degrade by some factor on each fork. One immediate issue that would
arise is that the fork would no longer be coassociativity of the comonoid, as different
branches would carry different ‘strengths’ of signals.

When working with potentially degraded signals, circuit designers use amplifiers
to restore the strength of signals. Which signal is restored can be nondeterministic,
so this could add an element of probability to digital circuits. Care would have to be
taken, as nondeterministic computations breaks the naturality of the copy: rolling a die
once and copying the outcome is not the same as duplicating the die and rolling each
of them separately.

Our notion of delay is quite primitive, as it delays all inputs by one step. In reality,
the propagation delay can differ depending on the change in signal; for example, the
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transition from high to low may be quicker than the transition from low to high. This
could be implemented by parameterising the shift⊥ stream function with different
delays for different inputs; how this might affect the rest of the framework remains to
be seen. The propagation delay can also be affected by fan-out; the higher the fan-out,
the higher the propagation delay.

The model of delay could be altered even further; rather than modelling it as a series
of discrete timesteps, it could be modelled continuously to handle asynchronous circuits.
This would be a significant change; since stream functions have discrete elements, what
would the denotation of circuits over continuous time be? It is possible that modelling
asynchronous circuits would require a completely different way of reasoning.
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cascade product, 72
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functor category, 32
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of functors, 27
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control flow, 218
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Conway fixed point operator, 212
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cospan, 151
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CPROP, 38, 158
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(Hyp𝐶,Σ), 156
Csp𝐷 (HypΣ), 153
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denotational equivalence, 86
denotational semantics, 55
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direct product, 73
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dual, 40
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218
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encoding, 81
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encoding equations

generalised, 132
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faithful functor, 27
feedback, 3

non-delay-guarded, 5
finitely specified stream function, 62
F, 153
F̂, 155
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Frob, 157
Frob𝐶 , 158
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FuncI , 60
functional completeness, 82
functional stream derivative, 62
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bifunctor, 33
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endofunctor, 25
faithful, 27
forgetful, 26
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free monoid, 26
full, 27
fully faithful, 27
functor composition, 27
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inclusion, 28
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powerset functor, 26
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gate-level circuits, 48
generalised
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productivity, 111
value rules, 110
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global trace-delay form, 99
graph rewriting, 188, 189
greatest element, 57
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hardware description language, 218
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coloured, 150
coloured signature, 150
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signature, 149
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coloured interfaced, 156
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HypΣ, 149
Hyp𝐶,Σ, 150
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initial object, 22

as a colimit, 31
initial output, 61
initial value, 61
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interpretation, 59
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equations, 115
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